Journal of Statistical Physics

, Volume 45, Issue 5–6, pp 1001–1030 | Cite as

Random walks on cubic lattices with bond disorder

  • M. H. Ernst
  • P. F. J. van Velthoven


We consider diffusive systems with static disorder, such as Lorentz gases, lattice percolation, ants in a labyrinth, termite problems, random resistor networks, etc. In the case of diluted randomness we can apply the methods of kinetic theory to obtain systematic expansions of dc and ac transport properties in powers of the impurity concentrationc. The method is applied to a hopping model on ad-dimensional cubic lattice having two types of bonds with conductivityσ andσ0=1, with concentrationsc and 1−c, respectively. For the square lattice we explicitly calculate the diffusion coefficientD(c,σ) as a function ofc, to O(c2) terms included for different ratios of the bond conductivityσ. The probability of return at long times is given byP0(t) [4πD(c,σ)t]−d/2, which is determined by the diffusion coefficient of the disordered system.

Key words

Lorentz gas random walk on a disordered lattice ant in a labyrinth termite problem bond percolation random resistor network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. H. Hauge, inTransport Phenomena, G. Kirczenov and J. Marro, eds. (Lecture Notes in Physics, No. 31, Springer-Verlag, Berlin, 1974), p. 338; J. R. Dorfman and H. van Beijeren, inStatistical Mechanics, Part B, Time Dependent Processes, B. J. Berne, ed. (Plenum Press, New York, 1977).Google Scholar
  2. 2.
    Th. M. Nieuwenhuizen, P. F. J. v. Velthoven, and M. H. Ernst,Phys. Rev. Lett., (1986).Google Scholar
  3. 3.
    D. Frenkel, preprint.Google Scholar
  4. 4.
    M. H. Ernst, P. F. J. van Velthoven, and Th. M. Nieuwenhuizen,J. Phys. A, Math. Gen. 19 (1986).Google Scholar
  5. 5.
    S. Kirkpatrick,Rev. Mod. Phys. 45:574 (1973); inIll-Condensed Matter, B. Balian, K. Maynard, and G. Toulouse, eds. (North-Holland, Amsterdam, 1979).Google Scholar
  6. 6.
    B. P. Watson and P. J. Leath,Phys. Rev. B 9:4893 (1974);12:498(E) (1975).Google Scholar
  7. 7.
    T. Odagaki, M. Lax, and A. Puri,Phys. Rev. B 28:2755 (1983); T. Odagaki,Phys. Rev. B 33:544 (1986).Google Scholar
  8. 8.
    E. J. Garboczi and M. F. Thorpe,Phys. Rev. B 33:3289 (1986).Google Scholar
  9. 9.
    A. B. Harris and S. Kirkpatrick,Phys. Rev. B 16:542 (1977).Google Scholar
  10. 10.
    J. B. T. M. Roerdink and K. E. Shuler,J. Stat. Phys. 41:581 (1985); J. B. T. M. Roerdink,Physica 132A (1985).Google Scholar
  11. 11.
    D. C. Hong, H. E. Stanley, A. Coniglio, and A. Bunde,Phys. Rev. B 33:4564 (1986).Google Scholar
  12. 12.
    D. Bedeaux, K. Lakatos-Lindenberg, and K. E. Shuler,J. Math. Phys. 12:2116 (1971).Google Scholar
  13. 13.
    J. P. Straley,Phys. Rev. B 15:5733 (1977).Google Scholar
  14. 14.
    T. Morita and T. Horiguchi,J. Math. Phys. 12:981 (1971).Google Scholar
  15. 15.
    S. Alexander, J. Bernasconi, W. R. Schneider, and R. Orbach,Rev. Mod. Phys. 53:175 (1981).Google Scholar
  16. 16.
    P. J. H. Denteneer and M. H. Ernst,Phys. Rev. B 29:1755 (1984).Google Scholar
  17. 17.
    I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series and Products (Academic Press, New York, 1965).Google Scholar
  18. 18.
    M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions (Dover, New York, 1970).Google Scholar
  19. 19.
    K. Golden and G. Papanicolaou,Commun. Math. Phys. 90:473 (1983).Google Scholar
  20. 20.
    G. L. Montet,Phys. Rev. B 7:650 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • M. H. Ernst
    • 1
  • P. F. J. van Velthoven
    • 1
  1. 1.Institute of Theoretical PhysicsUniversity of UtrechtTA UtrechtThe Netherlands

Personalised recommendations