Advertisement

Journal of Chemical Ecology

, Volume 12, Issue 2, pp 323–333 | Cite as

Binding and hydrolysis of radiolabeled pheromone and several analogs by male-specific antennal proteins of the mothAntheraea polyphemus

  • Glenn D. Prestwich
  • Richard G. Vogt
  • Lynn M. Riddiford
Article

Abstract

Sensory hair proteins from antennae of males of the wild silk moth,Antheraea polyphemus (Lepidoptera, Saturniidae) were incubated with radiolabeled 6E,11Z-hexadecadienyl acetate in the presence of unlabeled pheromone analogs as competitive inhibitors. The two extracellular proteins of importance, a highly active sensillar esterase and an abundant 15,000 mol wt binding protein, interact to degrade labeled pheromone less efficiently in the presence of certain unsaturated acetate analogs of the natural pheromone.

Enzymatic hydrolysis of the acetate (or diazoacetate) was also examined for three pheromone analogs: [11,12-3H2]-6E,11Z-hexadecadienyl diazoacetate, [11,12-3H2]-hexadecyl acetate, and [9,10-3H2]-9Z-tetradecenyl acetate. The former two are poor substrates at concentrations over four orders of magnitude. The 9Z–14:Ac, however, is the best alternative substrate for this in vitro pheromone metabolism system. Unlabeled 9Z–14: Ac is also the best competitive inhibitor of the hydrolysis of labeled 6E, 11Z–16: Ac. Whereas the tritiated natural pheromone shows a flat response (ca. 40% conversion) to increasing concentrations from 3 × 10−9 to 3 × 10−6 M, tritiated 9Z–14: Ac is degraded more rapidly at higher concentrations.

Key words

Antherea polyphemus Lepidoptera Saturniidae wild silk moth radiolabeled pheromone pheromone binding pheromone hydrolysis antennal proteins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boeckh, J., andBoeckh, V. 1979. Threshold and odor specificity of pheromone-sensitive neurons in the deutocerebrum ofAntheraea pernyi andA. polyphemus (Saturnidae).J. Comp. Physiol. 132:235–242.Google Scholar
  2. Ferkovich, S.M. 1981. Enzymatic alteration of insect pheromones, pp. 165–186,in D.M. Noms (ed.). Perception of Behavioral Chemicals. Elsevier/North Holland, Amsterdam.Google Scholar
  3. Ganjian, I., Pettei, M., Nakanishi, K., andKaissling, K.-E. 1978. A photoaffinity-labeled insect sex pheromone for the mothAntheraea polyphemus.Nature 271:157–158.Google Scholar
  4. Henrick, C.A. 1977. The synthesis of insect sex pheromones.Tetrahedron 34:1845–1889.Google Scholar
  5. Kaissling, K.E., Klein, U., de Kramer, J.J., Keil, T.A., Kanauija, S., andHemberger, J. 1985. Insect olfactory cells: Electrophysiological and biochemical studies, pp. 1–11,in J.P. Changeux, F. Hucho, A. Maelicke, and E. Neumann, (eds.). Molecular Basis of Nerve Activity: Proceedings of the International Symposium W. de Gruyter, Berlin.Google Scholar
  6. Klein, U. andKeil, T.A. 1984. Dendritic membrane from insect olfactory hairs: Isolation method and electron microscopical observations.Cell. Molec. Neurobiol. 4:385–396.Google Scholar
  7. Kochansky, J., Tette, J., Taschenberg, E.F., Cardé, R.T., Kaissling, K.-E., andRoelofs, W.L. 1975. Sex pheromone of the mothAntheraea polyphemus.J. Insect Physiol. 21:1977–1983.Google Scholar
  8. Prestwich, G.D., Golec, F.A., andAndersen, N.H. 1984a. Synthesis of a highly tritiated photoaffinity labeled pheromone analog for the mothAntheraea polyphemus.J. Labelled Compd. Radiopharmacol. 21:593–601.Google Scholar
  9. Prestwich, G.D., Singh, A.K., Carvalho, J.F., Koeppe, J.K., Kovalick, G.E., andChang, E. 1984b. Photoaffinity labels for insect juvenile hormone binding proteins.Tetrahedron 40:529–537.Google Scholar
  10. Priesner, E., Jacobson, M., andBestman, H.J. 1975. Structure-response relationships in noctuid sex pheromone reception.Z. Naturforsch. 30c:283–293.Google Scholar
  11. Still, W.C., Kahn, M., andMitra, A. 1978. Rapid chromatographic technique for preparative separations with moderate resolution.J. Org. Chem. 43:2923–2925.Google Scholar
  12. Vogt, R.G. 1984. The biochemical design of sex pheromone reception in the wild silk mothAntheraea polyphemus. PhD thesis. University of Washington (University Microfilms, 300 North Zeeb Road, Ann Arbor, Michigan 48106).Google Scholar
  13. Vogt, R.G., andRiddiford, L.M. 1981. Pheromone binding and inactivation by moth antennae.Nature 193:161–163.Google Scholar
  14. Vogt, R.G., andRiddiford, L.M. 1986. Pheromone reception: A kinetic equilibrium, pp. 201–208,in (T. Payne, R. Cardé, and J. Boeckh (eds.). Mechanisms of Perception and Orientation to Insect Olfactory Signals. Oxford University Press, Oxford. In press.Google Scholar
  15. Vogt, R.G., Riddiford, L.M., andPrestwich, G.D. 1985. Kinetic properties of a pheromone degrading enzyme: The sensillar esterase ofAntheraea polyphemus.Proc. Natl. Acad. Sci. U.S.A. 82:8827–8831.Google Scholar
  16. Vogt, R.G.,Prestwich, G.D., andRiddiford, L.M. 1986. Photoaffinity labeling of soluble and membrane proteins of isolated pheromone-specific sensory hairs of the mothAntheraea polyphemus. In preparation.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Glenn D. Prestwich
    • 1
  • Richard G. Vogt
    • 2
  • Lynn M. Riddiford
    • 2
  1. 1.Department of ChemistryState University of New YorkStony Brook
  2. 2.Department of ZoologyUniversity of WashingtonSeattle

Personalised recommendations