Honeydew analysis for detecting phloem transport of plant natural products

Implications for host-plant resistance to sap-sucking insects

Abstract

Analysis of honeydew excreted by various sap-sucking insects indicated the presence of certain plant secondary constituents in the phloem of their host plants. Honeydew excreted by mealybugs (Pseudococcus longispinus), living onCastanospermum australe, contained the indolizidine alkaloid castanospermine, a potent β-glucosidase inhibitor. Similarly, honeydew from green peach aphids (Myzus persicae), feeding onSenecio vulgaris flower buds, contained the pyrrolizidine alkaloid senecionine, itsN-oxide, and hydrolytic products including retronecine. Cardenolides were detected in the honeydew of oleander aphids (Aphis nerii) feeding on oleander (Nerium oleander), indicating that these compounds are translocated in the phloem. On the other hand, honeydew from greenbugs (Schizaphis graminum), feeding on barley, lacked gramine or related indole metabolites. Similarly MBOA, the breakdown product of DIMBOA, was not detected in the honeydew of greenbugs living on DIMBOA-containing wheat.

This is a preview of subscription content, access via your institution.

References

  1. Akey, D.H., andBeck, S.D. 1971. Continuous rearing of pea aphid,Acyrthosiphon pisum, on a holidic diet.Ann. Entomol. Soc. Am. 64:353–356.

    Google Scholar 

  2. Argandoña, V.H., andCorcuera, L.J. 1985. Distribution of hydroxamic acids inZea mays tissue.Phytochemistry 24:177–178.

    Google Scholar 

  3. Argandoña, V.H., Luza, J.G., Niemeyer, H.M., andCorcuera, L.J. 1980. Role of hydroxamic acids in the resistance of cereals to aphids.Phytochemistry 19:1665–1668.

    Google Scholar 

  4. Argandoña, V.H., Niemeyer, H.M., andCorcuera, L.J. 1981. Effect of content and distribution of hydroxamic acids in wheat on infestation by the aphidSchizaphis graminum.Phytochemistry 20:673–676.

    Google Scholar 

  5. Argandoña, V.H., Pena, G.F., Niemeyer, H.M., andCorcuera, L.J. 1982. Effect of cysteine on stability and toxicity to aphids of a cyclic hydroxamic acid from Gramineae.Phytochemistry 21:1573–1574.

    Google Scholar 

  6. Argandoña, V.H., Corcuera, L.J., Niemeyer, H.M., andCampbell, B.C. 1983. Toxicity and feeding deterrency of hydroxamic acids from Gramineae in synthetic diets against the greenbug,Schizaphis graminum.Entomol. Exp. Appl. 34:134–138.

    Google Scholar 

  7. Argandoña, V.H., Zuñiga, G.E., andCorcuera, L.J. 1987. Distribution of gramine and hydroxamic acids in barley and wheat leaves.Phytochemistry 26:1917–1918.

    Google Scholar 

  8. Bornman, C.H., andBotha, C.E.J. 1973. The role of aphids in phloem research.Endeavour 117:129–133.

    Google Scholar 

  9. Botha, C.E.J., Bornman, C.H., Carter, M., andHeeg, J. 1972. Transport studies onGomphocarpus physocarpus: Observations on the feeding habit ofAphis nerii B. de F.J. S. Afr. Bot. 38:195–203.

    Google Scholar 

  10. Brower, L.P., Seiber, J.N., Nelson, C.J., Lynch, S.P., andTuskes, P.M. 1982. Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies,Danaus plexippus reared on the milkweed,Asclepias eriocarpa in California.J. Chem. Ecol. 8:579–633.

    Google Scholar 

  11. Campbell, B.C., andBinder, R.G. 1984. Alfalfa cyclitols in the honeydew of an aphid.Phytochemistry 23:1786–1787.

    Google Scholar 

  12. Campbell, B.C., McLean, D.L., Kinsey, M.G., Jones, K.C., andDreyer, D.L. 1982. Probing behavior of the greenbug (Schizaphis graminum, biotype C) on resistant and susceptible varieties of sorghum.Entomol. Exp. Appl. 31:140–146.

    Google Scholar 

  13. Campbell, B.C., Molyneux, R.J., andJones, K.C. 1987. Differential inhibition by castanospermine of various insect disaccharidases.J. Chem. Ecol. 13:1759–1770.

    Google Scholar 

  14. Corcuera, L.J. 1984. Effects of indole alkaloids from Gramineae on aphids.Phytochemistry 23:539–541.

    Google Scholar 

  15. Dixon, A.F.G. 1975. Aphids and translocation, pp. 154–170,in M.H. Zimmerman and J.A. Milburn (eds.). Transport in Plants I: Phloem Transport. Springer-Verlag, Berlin.

    Google Scholar 

  16. Dreyer, D.L., andJones, K.C. 1981. Feeding deterrency of flavonoids and related phenolics towardsSchizaphis graminum andMyzus persicae: Aphid feeding deterrents in wheat.Phytochemistry 20:2489–2493.

    Google Scholar 

  17. Dreyer, D.L., Reese, J.C., andJones, K.C. 1981. Aphid feeding deterrents in sorghum: Bioassay, isolation and characterization.J. Chem. Ecol. 7:273–284.

    Google Scholar 

  18. Dreyer, D.L., Jones, K.C., andMolyneux, R.J. 1985. Feeding deterrency of some pyrrolizidine, indolizidine and quinolizidine alkaloids toward the pea aphid (Acyrthosiphon pisum) and evidence for phloem transport of the indolizidine alkaloid swainsonine.J. Chem. Ecol. 11:1045–1051.

    Google Scholar 

  19. Eschrich, W. 1966. Translokation13C-markierter assimilate im Licht und im Dunkeln beiVicia faba.Planta 70:99–124.

    Google Scholar 

  20. Eschrich, W. 1968. Translokation radioaktiv markierter Indolyl-3-essigsaeure in Siebroehren vonVica faba.Planta 78:144–157.

    Google Scholar 

  21. Hanson, A.D., Ditz, K.M., Singletary, G.W., andLeland, T.J. 1983. Gramine accumulation in leaves of barley grown under high-temperature stress.Plant Physiol. 71:896–904.

    Google Scholar 

  22. Harris, C.M., Campbell, B.C., Molynex, R.J., andHarris, T.M. 1988. Biosynthesis of swainsonine in the Diablo locoweed (Astragalus oxyphysus).Tetrahedron Lett. 29:4815–4818.

    Google Scholar 

  23. Hartmann, T., andToppel, G. 1987. SenecionineN-oxide, the primary product of pyrrolizidine alkaloid biosynthesis in root cultures ofSenecio vulgaris.Phytochemistry 26:1639–1643.

    Google Scholar 

  24. Kiss, A. 1984. Host-selection behaviour of nymphs ofVanduzeea arquata andEnchenopa binotata. Discrimination of whole twigs, leaf extracts and sap exudates.Entomol. Exp. Appl. 36:;169–175.

    Google Scholar 

  25. Lucker, M. Diettrich, B., andLerbs, W. 1980. Cellular compartmentation and channelling of secondary metabolism in microorganisms and higher plants, pp. 103–142,in L. Reinhold, J.B. Harbone, and T. Swain (eds.). Progress in Phytochemistry, Vol. 6. Pergamon Press, Oxford.

    Google Scholar 

  26. MacLeod, N.J., andPridham, J.B. 1965. Observations on the translocation of phenolic compounds.Phytochemistry 5:777–781.

    Google Scholar 

  27. Matile, P. 1984. Das toxische Kompartiment der Pflanzenzelle.Naturwissenschaften 71:18–24.

    Google Scholar 

  28. Mittler, T.E., 1958. Studies on the feeding and nutrition ofTuberolachnus salignus (Gmelin) (Homoptera, Aphididae)—II. The nitrogen and sugar composition of ingested phloem sap and excreted honeydew.J. Exp. Biol. 35:74–84.

    Google Scholar 

  29. Molyneux, R.J., andRoitman, J.N. 1980. Specific detection of pyrrolizidine alkaloids on thinlayer chromatograms.J. Chromatogr. 195:412–415.

    Google Scholar 

  30. Molyneux, R.J., James, L.F., andPanter, K.E. 1986. Chemistry of toxic constituents of locoweed (Astragalus and Oxytropis) species, pp. 266–278,in A.A. Seawright, M.P. Hegarty, L.F. James, and R.F. Keeler (eds.). Plant Toxicology. Queensland Poisonous Plants Committee, Yeerongpilly, Australia.

    Google Scholar 

  31. Montgomery, M.E., andArn, H. 1974. Feeding response ofAphis pomi, Myzus persicae andAmphorophora agathonica to phlorizin.J. Insect Physiol. 20:413–421.

    Google Scholar 

  32. Peel, A.J. 1975. Investigations with aphid stylets into the physiology of the sieve tube, pp. 171–195,in M.H. Zimmerman and J.A. Milburn (eds.). Transport in Plants I: Phloem Transport. Springer-Verlag, Berlin.

    Google Scholar 

  33. Rothschild, M., von Euw, J., andReichstein, T. 1970. Cardiac glycosides in the oleander aphid,Aphis nerii.J. Insect Physiol. 16:1141–1145.

    Google Scholar 

  34. Saul, R., Molyneux, R.J., andElbein, A.D. 1984. Studies on the mechanism of castanospermine inhibition of α- and β-glucosidases.Arch. Biochem. Biophys. 230:668–675.

    Google Scholar 

  35. Saul, R., Ghidoni, J.J., Molyneux, R.J., andElbein, A.D. 1985. Castanospermine inhibits α-glucosidase activities and alters glycogen distribution in animals.Proc. Natl. Acad Sci. U.S.A. 82:93–97.

    Google Scholar 

  36. Schuette, H.R. 1972. Physiology of gramine synthesis, pp. 103–106,in K. Mothes (ed). Biochem. Physiol. Alkaloide, 4th International Symposium, Akademie-Verlag, Berlin.

    Google Scholar 

  37. Smith, T.A. 1977. Recent advances in the biochemistry of plant amines, pp. 27–81,in L. Reinhold, J.B. Harborne, and T. Swain (eds.). Progress in Phytochemistry, Vol. 4. Pergamon Press, Oxford.

    Google Scholar 

  38. Waller, G.R., andNowacki, E.K. 1978. Alkaloid Biology and Metabolism in Plants. Plenum, New York, pp. 121–141.

    Google Scholar 

  39. Weber, G., Oswald, S., andZoellner, U. 1986. Die Wirtseignung von Rapssorten unterschiedichen Glucosinolatgehaltes fuerBrevicoryne brassicae (L.) undMyzus persicae (Sulzer) (Homoptera, Aphididae).Z. Pflanzenkr. Pflanzenschutz 93:113–124.

    Google Scholar 

  40. Wink, M., andRoemer, P. 1986. Acquired toxicity—the advantages of specializing on alkaloidrich lupins toMacrosiphon albifrons (Aphideae).Naturwissenschaften 73:210–212.

    Google Scholar 

  41. Wink, M., andWitte, L. 1985. Quinolizidine alkaloids inPetteria ramentacea and the infesting aphids (Aphis cytisorum).Phytochemistry 24:2567–2568.

    Google Scholar 

  42. Wink, M., Hartmann, T., Witte, L., andRheinheimer, J. 1982. Interrelationship between quinolizidine alkaloid producing legumes and infesting insects: Exploitation of the alkaloid-containing phloem sap ofCytisus scoparius by the broom aphidAphis cytisorum.Z. Naturforsch. 37c:1081–1086.

    Google Scholar 

  43. Zuniga, G.E., Salgado, M.S., andCorcuera, L.J. 1985. Role of an indole alkaloid in the resistance of barley seedlings to aphids.Phytochemistry 24:945–947.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Molyneux, R.J., Campbell, B.C. & Dreyer, D.L. Honeydew analysis for detecting phloem transport of plant natural products. J Chem Ecol 16, 1899–1909 (1990). https://doi.org/10.1007/BF01020503

Download citation

Key words

  • Castanospermum australe
  • Moreton Bay chestnut
  • Senecio vulgaris
  • groundsel
  • Pseudococcus longispinus
  • mealybug
  • aphid
  • Schizaphis graminum
  • greenbug
  • Myzus persicae
  • green peach aphid
  • Aphis nerii
  • oleander aphid
  • Homoptera
  • Aphididae
  • Coccidae
  • phloem transport
  • honeydew
  • indolizidine
  • pyrrolizidine alkaloid
  • gramine
  • DIMBOA
  • cardenolide