Journal of Statistical Physics

, Volume 2, Issue 4, pp 379–385 | Cite as

Hall coefficient in solution for a simple dynamical model

  • S. Harris


A model Liouville equation is proposed for a system composed of an ion moving in a solvent fluid. Using this model, explicit results are obtained for the Ohmic conductivityL and the Hall conductivityh. These results are then used to calculate the Hall coefficientR = ehL−2, which is a measure of the effect of non-Brownian motion, for several charge carriers of interest. Our results are in agreement with earlier findings based on a stochastic model which predictR > 1 for H+(aq). Our results also indicate thatR ≈ 1 for charge carriers such as Na+, Cl, and K+ which have a mass greater than that of a solvent molecule (here taken as 18 amu).

Key words

Ion, solvent fluid applied electrical and magnetic fields transport coefficients non-Brownian effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. A. Rice and P. Gray,The Statistical Mechanics of Simple Liquids, Interscience, New York, 1965.Google Scholar
  2. 2.
    R. Zwanzig, inLectures in Theoretical Physics, Vol. 3, W. E. Brittin, W. B. Downs, and J. Downs, eds., Interscience, New York, 1962.Google Scholar
  3. 3.
    H. L. Friedman and A. Ben-Nain,J. Chem. Phys. 48:120 (1968).Google Scholar
  4. 4.
    J. M. Ziman,Phil. Mag. 7:865 (1962).Google Scholar
  5. 5.
    S. Harris and H. L. Friedman,J. Chem. Phys. 50:765 (1965).Google Scholar
  6. 6.
    P. Gray,Mol. Phys. 7:235 (1964).Google Scholar
  7. 7.
    P. S. Damle, A. Sjolander, and K. S. Swingi,Phys. Rev. 165:277 (1968).Google Scholar
  8. 8.
    J. L. Lebowitz and E. Rubin,Phys. Rev. 131:2381 (1963).Google Scholar
  9. 9.
    H. L. Friedman,J. Chim. Phys. (Numero Speciale), p. 75 (1969).Google Scholar
  10. 10.
    B. J. Berne and G. D. Harp, On the calculation of time correlation functions,”Advan. Chem. Phys., to appear.Google Scholar
  11. 11.
    B. J. Berne, J. P. Boon, and S. A. Rice,J. Chem. Phys. 45:1086 (1966).Google Scholar
  12. 12.
    A. Raman, private communication.Google Scholar
  13. 13.
    P. Mazur and I. Oppenheim,J. Phys. Soc. Japan (Suppl.) 26:35 (1969).Google Scholar
  14. 14.
    R. A. Robinson and R. H. Stokes,Electrolyte Solutions, Butterworths, London, 1955.Google Scholar
  15. 15.
    P. Resebois, J. Brocas, and G. Decan,J. Math. Phys. 10:1964 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1970

Authors and Affiliations

  • S. Harris
    • 1
  1. 1.College of EngineeringState University of New YorkStony Brook

Personalised recommendations