Skip to main content
Log in

Aldrin epoxidase activity and cytochrome P-450 content of sawfly larvae,Pergagrapta polita Leach (Hymenoptera: Pergidae) feeding on twoEucalyptus species

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Aldrin epoxidase and cytochrome P-450 levels were determined in sawfly larvae,Pergagrapta polita Leach. Of the tissues examined the anterior portion of the midgut had the highest levels of aldrin epoxidase activity and cytochrome P-450 content, 3.56 nmol dieldrin produced/min/mg protein and 1.28 nmol/mg protein, respectively. No significant differences in aldrin epoxidase activities were observed between groups of larvae representing the last three larval instars and between larvae feeding on two eucalypt species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, S. 1982. Roles of mixed-function oxidases in insect herbivory. Proc.5th Int. Symp.Insect-Plant Relationships, Wageningen (PUDOC) pp. 41–47.

  • Berry, R.E., Yu, S.J. andTerriere, L.C. 1980. Influence of host plants on insecticide metabolism and management of variegated cutworm.J. Econ. Entomol. 73:771–774.

    Google Scholar 

  • Brattsten, L.B. 1979. Biochemical defense mechanisms in herbivores against plant allelochemicals, pp. 199–270,in G.A. Rosenthal and D.H. Jantzen (eds.) Herbivores. Their Interaction with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • Brattsten, L.B. 1983. Cytochrome P-450 involvement in the interactions between plant terpenes and insect herbivores, pp. 173–195,in P.A. Hedin (ed.). Plant Resistance to Insects. ACS Symposium Series, 208. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Brattsten, L.B., Wilkinson, C.F., andEisner, T. 1977. Herbivore-plant interactions: Mixed function oxidases and secondary plant substances.Science 196:1349–1352.

    Google Scholar 

  • Croft, B.A., andMullin, C.A. 1984. Comparison of detoxification enzyme systems inArgyrotaenia citrana (Lepidoptera: Tortricidae) and the ectoparasite,Oncophanes americanus (Hymenoptera: Braconidae).Environ. Entomol. 13:1330–1335.

    Google Scholar 

  • Farnsworth, D.E., Berry, R.E., Yu, S.J., andTerriere, L.C. 1981. Aldrin epoxidase activity and cytochrome P-450 content of microsomes prepared from alfalfa and cabbage looper larvae fed various plant diets.Pestic. Biochem. Physiol. 15:158–165.

    Google Scholar 

  • Gilbert, M.D., andWilkinson, C.F. 1974. Microsomal oxidases in the honeybee,Apis mellifera L.Pestic. Biochem. Physiol. 4:56–66.

    Google Scholar 

  • Gould, F. 1984. Mixed function oxidases and herbivore polyphagy: The devil's advocate position.Ecol. Entomol. 9:29–34.

    Google Scholar 

  • Hodgson, E. 1985. Microsomal monooxygenases, pp. 225–321,in G.A. Kerkut and L.I. Gilbert (eds). Comprehensive Insect Physiology, Biochemistry and Pharmacology. Vol. II, Pharmacology. Pergamon Press, Oxford.

    Google Scholar 

  • Krieger, R.I., andWilkinson, C.F. 1969. Microsomal mixed-function oxidases in insects. I. Localization and properties of an enzyme system effecting aldrin epoxidation in larvae of the southern armyworm (Prodenia eridania).Biochem. Pharamcol. 18:1403–1415.

    Google Scholar 

  • Krieger, R.I., Gilbert, M.D., andWilkinson, C.F. 1970. Microsomal mixed-function oxidase activity inMacremphytus varianus.J. Econ. Entomol. 63:1322–1323.

    Google Scholar 

  • Krieger, R.I., Feeny, P.P., andWilkinson, C.F. 1971. Detoxication enzymes in the guts of caterpillars: Evolutionary answer to plant defenses?Science 172:579–581.

    Google Scholar 

  • Krieger, R.I., Wilkinson, C.F., Hicks, L.J., andTaschenberg, E.F. 1976. Aldrin epoxidation, dihydroisodrin hydroxylation, andp-chloro-N-methylaniline demethylation in six species of saturniid larvae.J. Econ. Entomol. 69:1–5.

    Google Scholar 

  • Kulkarni, A.P., andHodgson, E. 1980. Metabolism of insecticides by mixed function oxidase systems.Pharmacol. Ther. 8:379–475.

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J. Farr, A.L., andRandall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275.

    Google Scholar 

  • Marty, M.A., Gee, S.J., andKrieger, R.I. 1982. Monooxygenase activities of fat body and gut homogenates of monarch butterfly larvae,Danaus plexippus, fed four cardenolide-containing milkweeds,Asdepias spp.J. Chem. Ecol. 8:797–805.

    Google Scholar 

  • Maxwell, D.E. 1955. The comparative internal larval anatomy of sawflies (Hymenoptera: Symphyta).Can. Entomol. 87 (Suppl. 1): 132 pp.

    Google Scholar 

  • Metcalf, R.L., andFukuto, T.R. 1965. Effects of chemical structure on intoxication and detoxication of phenylN-methylcarbamates in insects.J. Agric. Food Chem. 13:220–231.

    Google Scholar 

  • Metcalf, R.L., Fukuto, T.R., Wilkinson, C.F., Fahmy, S. El-Aziz, A., andMetcalf E.R. 1966. Mode of action of carbamate synergists.J. Agric. Food Chem. 14:555–562.

    Google Scholar 

  • Moldenke, A.F., Berry, R.E., andTerriere, L.C. 1983. Cytochrome P-450 in insects—V. Monoterpene induction of cytochrome P-450 and associated monooxygenase activities in the larva of the variegated cutwormPeridroma saucia (Hübner).Comp. Biochem. Physiol. 74C:365–371.

    Google Scholar 

  • Morrow, P.A., andFox, L.R. 1980. Effects of variation inEucalyptus essential oil yield on insect growth and grazing damage.Oecologia 45:209–219.

    Google Scholar 

  • Morrow, P.A., Bellas, T.E., andEisner, T. 1976.Eucalyptus oils in the defensive oral discharge of Australian sawfly larvae (Hymenoptera: Pergidae).Oecologia 24:193–206.

    Google Scholar 

  • Omura, T., andSato, R. 1964. The carbon monoxide-binding pigment of liver microsomes.J. Biol. Chem. 239:2370–2378.

    Google Scholar 

  • Riek, E.F. 1970. Hymenoptera, Chapter 37,in D.F. Waterhouse (ed.). The Insects of Australia. Melbourne University Press, Melbourne.

    Google Scholar 

  • Rose, H.A. 1984. Aldrin epoxidase activity in final instarSpodoptera litura (F.) larvae.Gen. Appl. Entomol. 16:68–72.

    Google Scholar 

  • Rose, H.A. 1985. The relationship between feeding specialisation and host plants to aldrin epoxidase activities of midgut homogenates in larval Lepidoptera.Ecol. Entomol. 10:455–467.

    Google Scholar 

  • Scriber, J.M. 1984. Host-plant suitability, pp. 159–202.in W.J. Bell and R.T. Cardé (eds.). Chemical Ecology of Insects. Chapman and Hall, London.

    Google Scholar 

  • Terriere, L.C. 1984. Induction of detoxication enzymes in insects.Annu. Rev. Entomol. 29:71–88.

    Google Scholar 

  • Wilkinson, C.F., andBrattsten, L.B. 1972. Microsomal drug metabolizing enzymes in insects.Drug Metab. Rev. 1:153–228.

    Google Scholar 

  • Yu, S.J. 1982. Induction of microsomal oxidases by host plants in the fall armyworm,Spodoptera frugiperda (J.E. Smith).Pestic. Biochem. Physiol. 17:59–67.

    Google Scholar 

  • Yu, S.J., Berry, R.E., andTerriere, L.C. 1979. Host plant stimulation of detoxifying enzymes in a phytophagous insect.Pestic. Biochem. Physiol. 12:280–284.

    Google Scholar 

  • Yu, S.J., Robinson, F.A., andNation, J.L. 1984. Detoxication capacity in the honey bee,Apis mellifera L. Pestic. Biochem. Physiol. 22: 360–368.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rose, H.A. Aldrin epoxidase activity and cytochrome P-450 content of sawfly larvae,Pergagrapta polita Leach (Hymenoptera: Pergidae) feeding on twoEucalyptus species. J Chem Ecol 13, 123–131 (1987). https://doi.org/10.1007/BF01020356

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01020356

Key words

Navigation