Journal of Chemical Ecology

, Volume 13, Issue 1, pp 19–33 | Cite as

Phytotoxic properties of cnicin, a sesquiterpene lactone fromcentaurea maculosa (spotted knapweed)

  • Rick G. Kelsey
  • Laura J. Locken


Water and solvent extracts from the aerial tissues ofCentaurea maculosa, spotted knapweed, inhibited the root growth of lettuce. Column chromatography and lettuce bioassay of a chloroform extract led to the isolation of cnicin, a sesquiterpene lactone. Pure cnicin was bioassayed at 0, 1, 2, 4, 6, 8, and 10 mg/5 ml water with lettuce, created wheatgrass, bluebunch wheatgrass, rough fescue, western larch, lodgepole pine, and spotted knapweed. Germination was inhibited at one or more concentrations for all species except lodgepole pine and spotted knapweed. Growth, particularly of the roots, was retarded between 1 and 4 mg of cnicin. Lettuce, bluebunch wheatgrass, and spotted knapweed were inhibited significantly at all concentrations tested.

Key words

Allelopathy spotted knapweed Centaurea maculosa sesquiterpene lactones cnicin phytotoxin germination inhibitor growth inhibitor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeysekera, B.F., Abramowsi, Z., andTowers, G.H.N. 1985. Chromosomal aberrations caused by sesquiterpene lactones in Chinese hamster ovary cells.Biochem. Syst. Ecol. 13:365–369.Google Scholar
  2. Amo, S.D., andAnaya, A.L. 1978. Effect of some sesquiterpenic lactones on the growth of certain secondary tropical species.J. Chem. Ecol. 4:305–313.Google Scholar
  3. Asakawa, Y., andTakemoto, T. 1979. Sesquiterpene lactones ofConocephalum conicum.Phytochemistry. 18:285–288.Google Scholar
  4. Belles, W.S.,Wattenbarger, D.W., andLee, G.A. 1980. Effects of various herbicide treatments and subsequent fertilization on spotted knapweed control and forage production in Bonner County. Western Society Weed Science Research Progress Report, pp. 57–60.Google Scholar
  5. Blakeman, J.P., andAtkinson, P. 1979. Antimicrobial properties and possible role in host-pathogen interactions of parthenolide, a sequiterpene lactone isolated from glands ofChrysanthemum parthenium.Physiol. Plant Pathol. 15:183–192.Google Scholar
  6. Bucher R.F. 1984. The potential cost of spotted knapweed to Montana range users. Cooperative Extension Service Bull. 1316, Montana State University, Bozeman.Google Scholar
  7. Burnett, W.C., Jr., Jones, S.B., Jr., Mabry, T.J., andPadolina, W.G., 1974. Sesquiterpene lactones—insect feeding deterrents inVernonia.Biochem. Syst. Ecol. 2:25–29.Google Scholar
  8. Burnett, W.C., Jones, S.B., andMabry, T.J. 1977. Evolutionary implications of sesquiterpene lactones inVernonia (Compositae) and mammalian herbivores.Taxon 26:203–207.Google Scholar
  9. Burnett, W.C., Jr., Jones, S.B., Jr., andMabry, T.J. 1978. The role of sesquiterpene lactones in plant-animal coevolution, pp. 233–257,in J.B. Harborne (ed.). Biochemical Aspects of Plant and Animal Coevolution. Academic Press, London.Google Scholar
  10. Cavallito, C.J., andBailey, J.H. 1949. An antibacterial principle fromCentaurea maculosa.J. Bacterial. 57:207–212.Google Scholar
  11. Chicoine, T.K. 1984. Spotted knapweed (Centaurea maculosa L.) control, seed longevity and migration in Montana. MS thesis, Montana State University, Bozeman.Google Scholar
  12. Dalvi, R.R., Singh, B., andSalunkhe, D.K. 1971. A study on phytotoxicity of alantolactone.Chem.-Biol. Interact. 3:13–18.Google Scholar
  13. Dupuis, G., Benezra, C., Schlewer, G., andStampf, J.L. 1980. Allergic contact dermatitis to α-methylene-7-butyrolactones.Mol. Immunol. 17:1045–1051.Google Scholar
  14. Elissalde, M.H., Ivie, G.W., Rowe, L.D., andElissalde, G.S. 1983. Considerations of the structure of sesquiterpene lactones on biological activity: Influence of the α-methylene-γ-lactone moiety on mast cell degranulation.Am. J. Vet. Res. 44:1894–1897.Google Scholar
  15. Fischer, N.H., andQuijano, L. 1985. Allelopathic agents from common weeds, pp. 133–147,in A.C. Thompson (ed.). The Chemistry of Allelopathy, ACS Symposium Series 268. American Chemical Society, Washington, D.C.Google Scholar
  16. Fletcher, R.A., andRenney, A.J. 1963. A growth inhibitor found inCentaurea spp.Can. J. Plant Sci. 43:475–481.Google Scholar
  17. French, R.A., andLacey, J.R. 1983. Knapweed: Its cause, effect and spread in Montana. Cooperative Extension Service Circular 307, Montana State University, Bozeman.Google Scholar
  18. Garciduenas, M.R., Domingeuz, X.A., Fernandez, J., andAlanis, G. 1972. New growth inhibitors fromParthenium hysterophorus.Rev. Latinoam. Quim. 2:52–53.Google Scholar
  19. Geppert, B., Drozdz, B.,Kielczewski, M., andHolub, M. 1983. Sesquiterpene lactones. XXIII. Isolation of sesquiterpene lactones fromCentaurea L. species.Acta Soc. Bot. Pol. 52:23–34.Google Scholar
  20. Gonzalez, A.G., Darias, V., Alonso, G., Boada, J.N., andFeria, M. 1978. Cytostatic activity of sesquiterpene lactones from Compositae of the Canary Islands.Planta Med. 33:356–359.Google Scholar
  21. Hall, I.H., Lee, K.H., Starnes, C.O., Muraoka, O., Sumida, Y., andWaddell, T.G. 1980a. Antihyperlipidemic activity of sesquiterpene lactones and related compounds.J. Pharm. Sci. 69:694–697.Google Scholar
  22. Hall, I.H., Starnes, C.O., Jr., Lee, K.H., andWaddell, T.G. 1980b. Mode of action of sesquiterpene lactones as antiinflammatory agents.J. Pharm. Sci. 69:537–543.Google Scholar
  23. Harmatha, J., andNawrot, J. 1984. Comparison of the feeding deterrent activity of some sesquiterpene lactones and a lignan lactone towards selected insect storage pests.Biochem. Syst. Ecol. 12:95–98.Google Scholar
  24. Harris, P., andCranston, R. 1979. An economic evaluation of control methods for diffuse and spotted knapweed in western Canada.Can. J. Plant. Sci. 59:375–382.Google Scholar
  25. Jones, S.B., Jr., Burnett. W.C. Jr., Coile, N.C., Mabry, T.J., andBetkouski, M.F. 1979. Sesquiterpene lactones ofVernonia—Influence of glaucolide-A on the growth rate and survival of lepidopterous larvae.Oecologia 39:71–77.Google Scholar
  26. Kanchan, S.D., andJayachandra. 1979a. Allelopathic effects ofParthenium hysterophorus L. I. Exudation of inhibitors through roots.Plant Soil 53:27–35.Google Scholar
  27. Kanchan, S.D., andJayachandra. 1979a. Allelopathic effects ofParthenium hysterophorous L. I. Exudation of inhibitors through roots.Plant Soil 53:27–35.Google Scholar
  28. Kanchan, S.D., andJayachandra. 1979b. Allelopathic effects ofParthenium hysterophorus L. III. Inhibitory effects of the weed residue.Plant Soil 53:37–47.Google Scholar
  29. Kanchan, S.D., andJayachandra 1980. Allelopathic effects ofParthenium hysterophorus L. Part IV. Identification of inhibitors.Plant Soil 55:67–75.Google Scholar
  30. Lacey, J.R. 1983. A complete takeover by knapweed in 2001?Mont. Farmer-Stockman 70:32–34.Google Scholar
  31. Lee, K.H., Huang, E.S., Piantadosi, C., Pagano, J.S., andGeissman, T.A. 1971. Cytotoxicity of sesquiterpene lactones.Cancer Res. 31:1649–1654.Google Scholar
  32. Lee, K.H., Hall, I.H., Mar, E.C., Starnes, C.O., Elgebaly, S.A., Waddell, T.G., Had-graft, R.I., Ruffner, C.G., andWeidner, I. 1977a. Sesquiterpene antitumor agents: Inhibitors of cellular metabolism.Science 196:533–536.Google Scholar
  33. Lee, K.H., Ibuka, T., Wu, R.Y., andGeissman, T.A. 1977b. Structure-antimicrobial activity relationships among the sesquiterpene lactones and related compounds.Phytochemistry 16:1177–1181.Google Scholar
  34. Lee, K.H., Ibuka, T., Sims, D., Muraoka, O., Kiyokawa, H., Hall, I.H., andKim, H.L. 1981. Antitumor agents. 44. Bis(helenalinyl) esters and related derivatives as novel potential anti leukemic agents.J. Med. Chem. 24:924–927.Google Scholar
  35. Liou, Y.F., Hall, I.H., Lee, K.H., Williams, W.L., Jr., andChaney, S.G. 1983. Investigation of sesquiterpene lactones as protein synthesis inhibitors of p-388 lymphocytic leukemia cells.Biochim. Biophys. Acta 739:190–196.Google Scholar
  36. Mabry, T.J., andGill, J.E., 1979. Sesquiterpene lactones and other terpenoids, pp. 501–537, in G.A. Rosenthal and D.H. Janzen (eds.). Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  37. Maddox, D.M. 1979. The knapweeds: Their economics and biological control in the western states,U.S.A. Rangelands 1:139–141.Google Scholar
  38. Mandava, N.B. 1985. Chemistry and biology of allelopathic agents, pp. 33–54,in A.C. Thompson (ed.). The Chemistry of Allelopathy, ACS Symposium Series 268. American Chemical Society, Washington, D.C.Google Scholar
  39. Marchant, Y.Y., Balza, F., Abeysekera, B.F., andTowers, G.H.N. 1984. Molluscicidal activity of sesquiterpene lactones.Biochem. Syst. Ecol. 12:285–286.Google Scholar
  40. McCahon, C.B., Kelsey, R.G., Sheridan, R.P., andSharizadeh, F. 1973. Physiological effects of compounds extracted from sagebrush.Bull. Torrey Bot. Club. 100:23–28.Google Scholar
  41. Muir, A.D., andMajak, W. 1983. Allelopathic potential of diffuse knapweed (Centaurea diffusa) extracts.Can. J. Plant Sci. 63:989–996.Google Scholar
  42. Picman, A.K. 1984. Antifungal activity of sesquiterpene lactones.Biochem. Syst. Ecol. 12:13–18.Google Scholar
  43. Picman, J., andPicman, A.K. 1984a. Autotoxicity inParthenium hysterophorus and its possible role in control of germination.Biochem. Syst. Ecol. 12:287–292.Google Scholar
  44. Picman, A.K., andPicman, J. 1984b. Effect of selected pseudoguaianolides on survival of the flour beetle,Tribolium confusum.Biochem. Syst. Ecol. 12:89–93.Google Scholar
  45. Picman, A.K., andTowers, G.H.N. 1983. Antibacterial activities of sesquiterpene lactones.Biochem. Syst. Ecol. 11:321–327.Google Scholar
  46. Politis, M.J. 1946a. Sur la formation des glucosides amers dans les poils glanduleux de certaines plantes.C.R. Acad. Sci. (Paris) 222:910–911.Google Scholar
  47. Politis, J. 1946b. Sur le mode de formation des essences dans certains poils glanduleux.C.R. Acad. Sci. (Paris) 222:1244–1245.Google Scholar
  48. Rodriguez, E., Towers, G.H.N., andMitchell, J.C. 1976. Biological activities of sesquiterpene lactones.Phytochemistry. 15:1573–1580.Google Scholar
  49. Rustaiyan, A., Niknejad, A., andAynehchi, Y. 1982. Chemical constituents ofCentaurea brugueriana.Planta Med. 44:185–186.Google Scholar
  50. Samek, Z., Holub, M., Herout, V., andSorm, F. 1969. Revision of the structure of cnicin.Tetrahedron Lett. 34:2931–2934.Google Scholar
  51. Schirman, R. 1981. Seed production and spring seedling establishment of diffuse and spotted knapweed.J. Range Manage. 34:45–47.Google Scholar
  52. Schirman, R. 1984. Seedling establishment and seed production of diffuse and spotted knapweed, pp. 7–10, Proceedings of the Knapweed Symposium, Cooperative Extension Service Bull. 1315, Montana State University, Bozeman.Google Scholar
  53. Seaman, F.C. 1982. Sesquiterpene lactones as taxonomic characteristics in the Asteraceae.Bot. Rev. 48:121–595.Google Scholar
  54. Spencer, G.F., Wolf, R.B., andWeisleder, D. 1984. Germination and growth inhibitory sesquiterpenes fromIva axillaris seeds.J. Nat. Prod. 47:730–732.Google Scholar
  55. Spring, O., andHager, A. 1982. Inhibition of elongation growth by two sesquiterpene lactones isolated fromHelianthus annuus L.Planta 156:433–440.Google Scholar
  56. Spring, O., Kupka, J., Maier, B., andHager, A. 1982. Biological activities of sesquiterpene lactones fromHelianthus annuus: Antimicrobial and cytotoxic properties; influence on DNA, RNA, and protein synthesis.Z. Naturforsch. 37:1087–1091.Google Scholar
  57. Stevens, K.L. 1982. Sesquiterpene lactones fromCentaures repens.Phytochemistry 21:1093–1098.Google Scholar
  58. Stevens, K.L., andMerrill, G.B. 1985. Sesquiterpene lactones and allelochemicals fromCentraurea species, pp. 83–98,in A.C. Thompson (ed.). The Chemistry of Allelopathy, ACS Symposium Series 268. American Chemical Society, Washington, D.C.Google Scholar
  59. Strang, R.M., Lindsay, K.M., andPrice, R.S. 1979. Knapweeds: British Columbia's undesirable aliens.Rangelands 1:141–143.Google Scholar
  60. Suchy, M., andHerout, V. 1962. On terpenes. CXXXVI. Identity of the bitter principle fromCentaurea stoebe (L.) Sch. et Thell. with cnicin.Collect. Czech. Chem. Commun. 27:1510–1512.Google Scholar
  61. Suchy, M., Benesova, V., Herout, V., andSorm, F. 1959. Contribution on the structure of cnicin, the bitter principle fromCnicus benedictus L.Tetrahedron Lett. 10:5–9.Google Scholar
  62. Suchy, M., Herout, V., andSorm, F. 1962. On terpenes. CXLI. Absolute configuration of cnicin and scabiolide.Collect. Czech. Chem. Commun. 27:2398–2403.Google Scholar
  63. Suchy, M., Samek, Z., Herout, V., andSorm, F. 1965. On terpenes. CLXXV. Revision of structure of artiopicrin, cnicin and scabiolide.Collect. Czech. Chem. Commun. 30:3473–3477.Google Scholar
  64. Van Aswegen, C.H., Potgieter, D.J.J., andVermeulen, N.M.J. 1982. Site of respiratory inhibition by sesquiterpene lactones fromGeigeria.S. Afr. J. Sci. 78:125–127.Google Scholar
  65. Vanhaelen-Fastré, R. 1972. Activities antibiotique et cytotoxique de la cnicine, isolee deCnicus benedictus L.J. Pharm. Belg. 27:683–688.Google Scholar
  66. Vanhaelen-Fastré, R., andVanhaelen, M. 1976. Activite antibiotique et cytotoxique de la cnicine et de ses produits d'hydrolyse.Planta Med. 29:179–189.Google Scholar
  67. Wagner, H. 1977. Pharmaceutical and economic uses of the Compositae, pp. 411–433,in V.H. Heywood, J.B. Harborne, and B.L. Turner (eds.). The Biology and Chemistry of the Compositae, Vol. I. Academic Press, London.Google Scholar
  68. Watson, A.K., andRenney, A.J. 1974. The biology of Canadian weeds. 6.Centaurea diffusa andC. maculosa.Can. J. Plant Sci. 54:687–701.Google Scholar
  69. Woynarowski, J.M., andKonopa, J. 1981. Inhibition of DNA biosynthesis in HeLa cells by cytotoxic and antitumor sesquiterpene lactones.Mol. Pharmacol. 19:97–102.Google Scholar
  70. Woynarowski, J.W., Beerman, T.A., andKonopa, J. 1981. Induction of deoxyribonucleic acid damage in HeLa S3 cells by cytotoxic and antitumor sesquiterpene lactones.Biochem. Pharmacol. 30:3005–3007.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Rick G. Kelsey
    • 1
  • Laura J. Locken
    • 1
  1. 1.Department of ChemistryUniversity of MontanaMissoula

Personalised recommendations