Journal of Statistical Physics

, Volume 57, Issue 5–6, pp 1059–1068 | Cite as

Statistical mechanics of convex bodies

  • F. Bavaud


The difficulties inherent in the construction of two-dimensional pressure ensembles are discussed, and are tackled by defining an energy cost depending on the convex hull of the set of particles. An energy proportional to the area of the convex hull is not able to prevent evaporation of the system, whereas an energy proportional to the area of the circumcircle of the convex hull ensures a thermodynamic behavior. In the latter model, which turns out to be exactly solvable, various characterizations are given of the geometry of a typical state.

Key words

Pressure ensemble container-free systems two-dimensional random polytopes isoperimetric deficit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. L. Hill,Statistical Mechanics (McGraw-Hill, New York, 1956).Google Scholar
  2. 2.
    K. W. Kratky,Phys. Rev. A 31:945–950 (1985).Google Scholar
  3. 3.
    E. H. Lieb and D. C. Mattis,Mathematical Physics in One Dimension (Academic Press, New York, (1966).Google Scholar
  4. 4.
    M. A. Hurwitz,Ann. Ecole Normale Sup. 19:357–408 (1902).Google Scholar
  5. 5.
    T. Bonnensen and W. Fenchel,Theorie der konvexen Körper (Springer, Berlin, 1934).Google Scholar
  6. 6.
    H. G. Eggleston,Convexity (Cambridge University Press, Cambridge, 1958).Google Scholar
  7. 7.
    L. A. Santaló,Integral Geometry and Geometric Probability (Addison-Wesley, London, 1976).Google Scholar
  8. 8.
    A. Rényi and R. Sulanke,Z. Wahrsch. 2:75–84 (1963).Google Scholar
  9. 9.
    A. Rényi and R. Sulanke,Z. Wahrsch. 3:138–147 (1964).Google Scholar
  10. 10.
    L. F. Tóth,Regular Figures (Pergamon Press, Oxford, 1964).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • F. Bavaud
    • 1
  1. 1.Department of MathematicsHeriot-Watt UniversityEdinburghScotland

Personalised recommendations