Rock Mechanics and Rock Engineering

, Volume 29, Issue 1, pp 1–18 | Cite as

Modelling of rock temperatures for deep alpine tunnel projects

  • L. Goy
  • D. Fabre
  • G. Menard


The construction of deep railway tunnels requires the prediction of natural temperatures at depth. Geothermal data for the Alps are presented and principles of previously employed methods to predict temperatures, using Andreae's analytical approach, are discussed. We then use a finite element numerical model based on pure conduction to calculate temperatures at depth. This method allows rock heterogeneity and anisotropy to be taken into account.

This model is applied to the Maurienne-Ambin tunnel project, a 55 km long tunnel between St-Jean-de-Maurienne (France) and Susa (Italy), which will be the longest tunnel for the planned TGV (high speed train) Lyon-Torino link. Data from several deep boreholes (10 total, with 3>1000 m) are used to provide essential parameters for the model, i.e.:
  • - geological structure;

  • - geothermal gradients;

  • - rock conductivities from cores;

  • - geothermal deep heat flow.

Modelling is done in two dimensions, but the effect of surface topography (3 D) is considered. Results are given in the form of a geothermal cross-section along the tunnel axis that provides maximum temperatures and lengths of zones of high temperature encountered (for instance, zones where θ is ≥40°C). In general, differences between calculated and measured temperatures are less than 1°C at great depth. At shallow depth, differences are sometimes higher and probably best explained by water circulation connected to the surface.

The modelling of temperatures, in relation to the geological structure, rock properties, and geothermal data for this area, appears to be a very useful tool for comparing alternative routes for deep tunnel projects and, during construction, to predict potential local geological or hydrological anomalies.


Geological Structure Geothermal Gradient High Speed Train Speed Train Deep Borehole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreae, C. (1948): Les grands souterrains transalpins, S.A. Leeman frères ed., Zürich.Google Scholar
  2. Andreae, C. (1958): La prévision des températures souterraines. Mémoires et documents E.D.F., Janvier-Février, 39–85.Google Scholar
  3. Antoine, P., Fabre, D. (1980): Géologie appliquée au génie civil, Masson, Paris, 288.Google Scholar
  4. Antoine, P., Fabre, D., Ménard, G. (1990): Contraintes liées à la géologie pour les projets de tunnels transalpins. Proc. Int. Conf. Underground Crossings for Europe, Lille, Legrand (ed), Balkema, Rotterdam, 169–171.Google Scholar
  5. Antoine, P., Fabre, D., Coppola, B., Fauvel, P., Lacombe, P., Le Mouel, A., Ménard, G., Ricard, A. (1993): Reconnaissances pour le tunnel ferroviaire de base entre la France et l'Italie. Proc., Int. Conf. Underground Transportation Infrastructures, Toulon, Reith (ed.), Balkema, Rotterdam, 87–91.Google Scholar
  6. Antoine, P., Fabre, D., Lacombe, P., Ménard, G. (1994): Les problèmes géologiques posés par le tunnel ferroviare de base franco-italien sous les Alpes. Proc., 7th Int. I.A.E.G. Congress, Lisbon, Balkema, 4297–4303.Google Scholar
  7. Burlet, D., Fabre, D., Ménard, G. (1995): Mesures de contraintes in situ par tests hydrauliques de fractures en forage dans le cadre d'un projet de grand tunnel sous les Alpes. Proc., 8th Int. ISRM Congress, Tokyo.Google Scholar
  8. Clark, S. P., Jäger, E. (1969): Denudation rate in the Alps from geochronologic and heat flow data. Am. J. Sci. 267, 1143–1160.Google Scholar
  9. De Giovanni, H., Laschi, M. (1991): Détermination des diffusivités thermiques des matériaux anisotropes par la méthode flash bidirectionnelle. J. Phys. III (France) 1, 2027–2046.Google Scholar
  10. De Saintignon, M. F. (1976): Décroissance des températures en montagne de latitude moyenne: exemple des Alpes française du Nord. Rev. Geogr. Alpine MXIV, 483–494.Google Scholar
  11. Fabre, D., Goy, L., Baudoin, A., Ménard, G. (1993): La prévision des températures naturelles pour les projects de grands tunnels transalpins. Proc. Int. Conf. Underground Transportation Infrastructures, Toulon, Reith (ed.), Balkema, Rotterdam, 103–107.Google Scholar
  12. Gable, R. (1986): Température, gradient et flux de chaleur terrestre. Mesures, interprétation. Documents du B.R.G.M. 104, 187.Google Scholar
  13. Geo-Slope International Ltd. (1994): Seep/W version 3 — Calgary (Canada).Google Scholar
  14. Koenigsberger, J. Thoma, E. (1906): Über die Beeinflussung der geothermischen Tiefenstufe durch Berge und Täler..., Eclog. Géol. Helv. IX (1).Google Scholar
  15. Rybach, L., Pfister, M. (1994): Temperature predictions and predictive temperatures in deep tunnels. Rock Mech. Rock Engng. 27 (2), 77–88.Google Scholar
  16. Szechy, K. (1967): The art of tunnelling. Akademiai Kiado, Budapest, 891.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • L. Goy
    • 1
  • D. Fabre
    • 1
  • G. Menard
    • 2
  1. 1.Laboratoire de Géologie et MécaniqueUniversité Joseph Fourier IRIGMGrenobleFrance
  2. 2.Laboratoire de GéodynamiqueUniversité de SavoieChambéryFrance

Personalised recommendations