Advertisement

Fluid Dynamics

, Volume 3, Issue 3, pp 111–113 | Cite as

Correlation of experimental data on the pulsation velocity intensity for turbulent fluid flow in channels of different form

  • V. P. Bobkov
  • M. Kh. Ibragimov
  • G. I. Sabelev
Article
  • 36 Downloads

Abstract

An analysis is made of experimental data on the intensity of the velocity pulsations in turbulent fluid flow in channels of different shape. Correlating relations are constructed for the intensity of the velocity pulsation components as a function of the flow regime and coordinates.

Keywords

Experimental Data Fluid Flow Flow Regime Velocity Pulsation Turbulent Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notation

x, y, z

coordinates in the flow direction, along the normal and parallel to the channel wall, respectively

a

normal distance from the channel center to the wall

b

distance from the channel corner to the point of intersection with the wall of the normal from the channel center

ξ1

dimensionless distance along the normal from the channel wall

ξ2

dimensionless distance in the direction parallel to the channel wall

U

local fluid velocity

Um

maximal fluid velocity

U

average fluid velocity across the section

σi

intensity (mean square value) of the i-th component of the velocity pulsations (u, v, w are the indices in the directions x, y, z, respectively)

σi0

value of the intensity of the velocity pulsation components at the center of the channel

ΔUL

velocity difference within the limits of the hydrcdynamic macroscale

q2

total turbulence energy at a fixed point of the flow

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Laufer, “The structure of turbulence in fully developed pipe flow”, NACA, Rep., no. 1174, 1954.Google Scholar
  2. 2.
    H. Reichardt, “Messungen turbulenten Schwankungen”, Naturwiss., vol. 26, no. 2, 404–408, 1938.Google Scholar
  3. 3.
    J. Laufer, “Investigation of turbulent flow in a two-dimensional channel”, NACA, Rep., no. 153, 1951.Google Scholar
  4. 4.
    G. Comte-Bellot, “Contribution a l'étude de la turbulence de conduite”, Thèses pour obtenir le grade de docteur en sciences, Grenoble, 1963.Google Scholar
  5. 5.
    E. Brundrett and W. D. Baines, “The production and diffusion of vorticity in duct flow”, Journal of Fluid Mechanics, vol. 19, no. 3, 375–394, 1964.Google Scholar
  6. 6.
    K. Cramers and E. Eckert, “Measurement with the aid of hot-wire anemometer of the characteristics of turbulent air flow in a channel of triangular cross section”, collection: Applied Mechanics [Russian translation], series E, vol. 29, no. 4, 1962.Google Scholar
  7. 7.
    E. Rodet, “Étude de l'ecoulement d'un fluide dans un tunnel prismatique de section trapezoidale”, Thèses pour obtenir le grade de docteur en sciences physiques, Grenoble, 1958.Google Scholar
  8. 8.
    J. O. Hinze, Turbulence [Russian translation], Fizmatgiz, Moscow, 1963.Google Scholar
  9. 9.
    J. A. Brighton and J. B. Jones, “Fully developed turbulent flow in annuli”, Trans. ASME, ser. D, vol. 86, no. 4, 835–844, 1964.Google Scholar
  10. 10.
    L. Prandtl, “Bemerkungen zur Theorie der freien Turbulenz”, ZAMM, vol. 22, no. 5, 241, 1942.Google Scholar

Copyright information

© Consultants Bureau 1971

Authors and Affiliations

  • V. P. Bobkov
    • 1
  • M. Kh. Ibragimov
    • 1
  • G. I. Sabelev
    • 1
  1. 1.Obninsk

Personalised recommendations