Journal of Statistical Physics

, Volume 54, Issue 3–4, pp 925–948 | Cite as

On the symmetry-breaking bifurcation of chaotic attractors

  • K. G. Szabó
  • T. Tél


A new type of crisis is shown to exist in a broad class of systems (including the Lorenz model) which leads to an anomalous band splitting or to a symmetry-breaking bifurcation of the strange attractor, depending on the actual values of the control parameters. A piecewise linear model is used to understand the mechanism of this crisis and to obtain exact results.

Key words

Symmetry breaking chaos band splitting crisis piecewise linear map 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Coleman, inSecret Symmetry: An Introduction to Spontaneous Symmetry Breakdown and Gauge Fields in Laws of Hadronic Matter, E. Zichichi, ed. (Academic Press, New York, 1975); D. Forster,Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions (Benjamin, Reading, 1975); S. K. Ma.Modern Theory of Critical Phenomena (Benjamin, Reading, 1976).Google Scholar
  2. 2.
    N. Morioka and T. Shimizu,Phys. Lett. 66A:447 (1978); J. Shimida and T. Nagashima,Prog. Theor. Phys. 61:1605 (1979); K. H. Alfsen and J. Froyland,Physica Scripta 31:15 (1985).Google Scholar
  3. 3.
    E. N. Lorenz,J. Atmos. Sci. 20:130 (1963).Google Scholar
  4. 4.
    M. Kitano, T. Yabukazi, and T. Ogawa,Phys. Rev. A 29:1288 (1984).Google Scholar
  5. 5.
    C. Grebogi, E. Ott, and J. A. Yorke,Physica 7D:181 (1983).Google Scholar
  6. 6.
    P. Collet and J.-P. Eckmann,Iterated Maps on the Interval as Dynamical Systems (Birkhäuser, Boston, 1980).Google Scholar
  7. 7.
    T. Rikitake,Proc. Camb. Phil. Soc. 54:89 (1958).Google Scholar
  8. 8.
    O. E. Rössler,Z. Naturforsch. 31a:1664 (1976).Google Scholar
  9. 9.
    J. A. Yorke and E. D. Yorke,J. Stat. Phys. 21:263 (1979).Google Scholar
  10. 10.
    A. Arneodo, P. Coullet, and C. Tresser,Phys. Lett. 81A:197 (1981).Google Scholar
  11. 11.
    C. Sparrow,The Lorenz Equations: Bifurcation, Chaos and Strange Attractors (Springer, New York, 1982).Google Scholar
  12. 12.
    D. V. Lyubimov and M. A. Zaks,Physica 9D:52 (1984).Google Scholar
  13. 13.
    P. Szépfalusy and T. Tél,Physica 16D:252 (1985).Google Scholar
  14. 14.
    J.-M. Gambaudo, I. Procaccia, S. Thomae, and Ch. Tresser,Phys. Rev. Lett. 57:925 (1986); I. Procaccia, S. Thomae, and C. Tresser,Phys. Rev. A 35:1884 (1987).Google Scholar
  15. 15.
    L. P. Shilnikov,Math. USSR Sb. 6:427 (1968).Google Scholar
  16. 16.
    Z. Kaufmann, P. Szépfalusy, and T. Tél,Acta Phys. Hung. 62:321 (1987).Google Scholar
  17. 17.
    R. Lozi,J. Phys. (Paris)39:C5–9 (1978); R. Lozi, inIntrinsic Stochasticity in Plasmas, G. Laval and D. Gresillon, eds. (Edition de Physique, Orsay, 1979).Google Scholar
  18. 18.
    M. Hénon,Commun. Math. Phys. 50:69 (1976).Google Scholar
  19. 19.
    M. Misiurewicz, inNonlinear Dynamics, R. H. G. Helleman, ed. (New York Academy of Sciences, New York, 1980).Google Scholar
  20. 20.
    T. Tél,Z. Phys. B 49:157 (1982);Phys. Lett. 94A:334 (1983);J. Stat. Phys. 33:195 (1983).Google Scholar
  21. 21.
    P. Collet and M. Levy,Commun. Math. Phys. 93:461 (1984).Google Scholar
  22. 22.
    G. Gunaratne, Thesis, Cornell University, Ithaca, New York (1986); H. Hato, T. Morika, K. Tomita, and H. Mori,Prog. Theor. Phys. 78:721 (1987); D. Auerbach, B. O'Shaughnessy, and I. Procaccia,Phys. Rev. A 37:2234 (1988); P. Cvitanović, G. Gunaratne, and I. Procaccia,Phys. Rev. A, to appear.Google Scholar
  23. 23.
    R. Thibault,Comptes Rendus 297 (Ser. 1):603 (1983); R. L. Devaney,Physica 10D:387 (1984).Google Scholar
  24. 24.
    T. Tél,Phys. Lett. 97A:219 (1983).Google Scholar
  25. 25.
    R. Riedi, Thesis, Zürich (1986).Google Scholar
  26. 26.
    E. Ott,Rev. Mod. Phys. 53:655 (1981).Google Scholar
  27. 27.
    J. D. Farmer, E. Ott, and J. A. Yorke,Physica 7D:153 (1983).Google Scholar
  28. 28.
    H. G. E. Hentschel and I. Procaccia,Physica 8D:435 (1983).Google Scholar
  29. 29.
    R. Badii and A. Politi,Phys. Rev. Lett. 52:1661 (1984).Google Scholar
  30. 30.
    P. Szépfalusy and T. Tél,Phys. Rev. A 34:2520 (1986).Google Scholar
  31. 31.
    J. C. Alexander and J. A. Yorke,Ergod. Theor. Dynam. Syst. 4:1 (1984).Google Scholar
  32. 32.
    H. Fujisaka and S. Grossmann,Z. Phys. B 48:261 (1982); J. Nierwetberg, Thesis, Regensburg (1985).Google Scholar
  33. 33.
    J. Wilbrink,J. Phys. A 19:2973 (1986).Google Scholar
  34. 34.
    H. Kantz and P. Grassberger,Physica 17D:75 (1985).Google Scholar
  35. 35.
    C. Chen, G. Györgyi, and G. Schmidt,Phys. Rev. A 35:2660 (1987).Google Scholar
  36. 36.
    J. A. Ketoja, Helsinki University of Technology Report TKKF-F-B109 (Helsinki, 1987).Google Scholar
  37. 37.
    B. B. Mandelbrot,Fractals: Form, Chance and Dimension (Freeman, San Francisco, 1977).Google Scholar
  38. 38.
    J. L. Kaplan and J. A. Yorke, inLecture Notes in Mathematics, No. 730 (1979), p. 223.Google Scholar
  39. 39.
    J.-P. Eckmann and D. Ruelle,Rev. Mod. Phys. 57:617 (1985).Google Scholar
  40. 40.
    L.-S. Young,Ergod. Theor. Dynam. Syst. 2:109 (1982).Google Scholar
  41. 41.
    J. Balatoni and A. Rényi,Publ. Math. Inst. Hung. Acad. Sci. 1:9 (1956) (in Hungarian) [English translation inSelected Papers of A. Rényi, Vol. 1, P. Turán, ed. (Akadémiai, Budapest, 1976), p. 558]; A. Rényi,Acta Math. Hung. 10:193 (1959); A. Rényi,Probability Theory (North-Holland, 1970).Google Scholar
  42. 42.
    P. Grassberger,Phys. Lett. 97A:227 (1983).Google Scholar
  43. 43.
    D. Farmer,Phys. Rev. Lett. 55:321 (1985); inDimensions and Entropies in Chaotic Systems, E. Mayer-Kress, ed. (Springer, New York, 1986), p. 54.Google Scholar
  44. 44.
    K. J. Falconer,J. Stat. Phys. 47:123 (1987).Google Scholar
  45. 45.
    D. Farmer,Z. Naturforsch. 37a:1304 (1982).Google Scholar
  46. 46.
    T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman,Phys. Rev. A 33:1141 (1986).Google Scholar
  47. 47.
    P. Grassberger, inChaos, A. V. Holden, ed. (Manchester University Press, Manchester, 1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • K. G. Szabó
    • 1
  • T. Tél
    • 1
  1. 1.Institute for Theoretical PhysicsEötvös UniversityBudapest, Puskin u. 5-7Hungary

Personalised recommendations