Skip to main content
Log in

The projection approach to the Fokker-Planck equation. I. Colored Gaussian noise

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

It is shown that the Fokker-Planck operator can be derived via a projection-perturbation approach, using the repartition of a more detailed operator into a perturbation 1 and an unperturbed part 0. The standard Fokker-Planck structure is recovered at the second order in 1, whereas the perturbation terms of higher order are shown to provoke the breakdown of this structure. To get rid of these higher order terms, a key approximation, local linearization (LL), is made. In general, to evaluate at the second order in 1 the exact expression of the diffusion coefficient which simulates the influence of a Gaussian noise with a finite correlation timeτ, a resummation up to infinite order inτ must be carried out, leading to what other authors call the best Fokker-Planck approximation (BFPA). It is shown that, due to the role of terms of higher order in 1, the BFPA leads to predictions on the equilibrium distributions that are reliable only up to the first order in t. The LL, on the contrary, in addition to making the influence of terms of higher order in 1 vanish, results in a simple analytical expression for the term of second order that is formally coincident with the complete resummation over all the orders in t provided by the Fox theory. The corresponding diffusion coefficient in turn is shown to lead in the limiting case τ→∞ to exact results for the steady-state distributions. Therefore, over the whole range 0⩽τ⩽∞ the LL turns out to be an approximation much more accurate than the global linearization proposed by other authors for the same purpose of making the terms of higher order in 1 vanish. In the short-τ region the LL leads to results virtually coincident with those of the BFPA. In the large-τ region the LL is a more accurate approximation than the BFPA itself. These theoretical arguments are supported by the results of both analog and digital simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. W. Evans, P. Grigolini, and G. Pastori Parravicini, eds.,Memory Function Approaches to Stochastic Problems in Condensed Matter (Wiley, New York, 1985).

    Google Scholar 

  2. M. San Miguel and J. M. Sancho,Phys. Lett. 76A:97 (1980).

    Google Scholar 

  3. H. Dekker,Phys. Lett. 90A:26 (1982).

    Google Scholar 

  4. R. F. Fox,Phys. Lett. 94A:281 (1983).

    Google Scholar 

  5. P. Hanggi, inStochastic Processes Applied to Physics, L. Pesquera and E. Santos, eds. (Heyden, Philadelphia, 1985); P. Hanggi,Springer Lecture Notes in Physics (Springer-Verlag, 1984).

    Google Scholar 

  6. P. Hanggi, F. Marchesoni, and P. Grigolini,Z. Phys. B 56:333 (1984).

    Google Scholar 

  7. P. Hanggi, T. J. Mroczkowsky, F. Moss, and P. V. E. McClintock,Phys. Rev. A 32:695 (1985).

    Google Scholar 

  8. P. Grigolini, inAdvances in Nonlinear Dynamics and Stochastic Processes, R. Livi and A. Politi, eds. (World Scientific, Singapore, 1985).

    Google Scholar 

  9. R. Fox,Phys. Rev. A 33:467 (1986);34:4525 (1986).

    Google Scholar 

  10. L. Garrido and J. M. Sancho,Physica 115A:479 (1982).

    Google Scholar 

  11. J. M. Sancho, M. San Miguel, S. L. Katz, and J. D. Gunton,Phys. Rev. A 26:1589 (1982).

    Google Scholar 

  12. J. M. Sancho, F. Sagues, and M. San Miguel,Phys. Rev. A 33:3399 (1986).

    Google Scholar 

  13. K. Lindenberg and B. J. West,Physica 119A:485 (1983).

    Google Scholar 

  14. P. Grigolini,Phys. Lett. 119A:157 (1986).

    Google Scholar 

  15. J. Masoliver, B. J. West, and K. Lindenberg,Phys. Rev. A 35:3086 (1987).

    Google Scholar 

  16. R. Zwanzig,J. Chem. Phys. 33:1338 (1960).

    Google Scholar 

  17. P. Grigolini,Mol. Phys. 30:1874 (1974).

    Google Scholar 

  18. P. Grigolini and A. Lami,Chem. Phys. 30:61 (1978).

    Google Scholar 

  19. S. Mukamel, I. Oppenheim, and J. Ross,Phys. Rev. A 17:1988 (1978).

    Google Scholar 

  20. N. G. van Kämpen,Phys. Rep. 24C:171 (1976).

    Google Scholar 

  21. E. Peacok-Lopez, K. Lindenberg, and B. West, work in preparation.

  22. P. Grigolini and F. Marchesoni,Adv. Chem. Phys. 62:29 (1985).

    Google Scholar 

  23. R. F. Fox and R. Roy,Phys. Rev. A 35:1838 (1987).

    Google Scholar 

  24. L. Lugiato and R. J. Horowitz,J. Opt. Soc. Am. 2B:971 (1985).

    Google Scholar 

  25. G. Tsironis and P. Grigolini,Phys. Rev. Lett., submitted.

  26. S. Faetti and P. Grigolini,Phys. Rev. A 36:441 (1987).

    Google Scholar 

  27. J. H. Ahrens and U. Dieter,Math. Comp. 27:927 (1983).

    Google Scholar 

  28. L. Fronzoni, P. Grigolini, P. Hanggi, F. Moss, R. Mannella, and P. V. E. McClintock,Phys. Rev. A 33:3320 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faetti, S., Fronzoni, L., Grigolini, P. et al. The projection approach to the Fokker-Planck equation. I. Colored Gaussian noise. J Stat Phys 52, 951–978 (1988). https://doi.org/10.1007/BF01019735

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01019735

Key words

Navigation