Advertisement

Journal of Statistical Physics

, Volume 52, Issue 3–4, pp 527–569 | Cite as

Presentation functions, fixed points, and a theory of scaling function dynamics

  • Mitchell J. Feigenbaum
Articles

Abstract

Presentation functions provide the time-ordered points of the forward dynamics of a system as successive inverse images. They generally determine objects constructed on trees, regular or otherwise, and immediately determine a functional form of the transfer matrix of these systems. Presentation functions for regular binary trees determine the associated forward dynamics to be that of a period doubling fixed point. They are generally parametrized by the trajectory scaling function of the dynamics in a natural way. The requirement that the forward dynamics be smooth with a critical point determines a complete set of equations whose solution is the scaling function. These equations are compatible with a dynamics in the space of scalings which is conjectured, with numerical and intuitive support, to possess its solution as a unique, globally attracting fixed point. It is argued that such dynamics is to be sought as a program for the solution of chaotic dynamics. In the course of the exposition new information pertaining to universal mode locking is presented.

Key words

Scaling thermodynamics period doubling mode locking dynamical systems chaos renormalization group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. Feigenbaum, Universality in Complex Discrete Dynamics, LA-6816-PR: Theoretical Division Annual Report, July 1975–September 1976, Los Alamos;J. Stat. Phys. 19:25 (1978);21:669 (1979).Google Scholar
  2. 2.
    D. Ruelle,Statistical Mechanics, Thermodynamic Formalism (Addison-Wesley, 1978).Google Scholar
  3. 3.
    E. B. Vul, Ya. G. Sinai, and K. M. Khanin,Uspekhi Mat. Nauk 39:3 (1984) [Russ. Math. Surv. 39:1 (1984)].Google Scholar
  4. 4.
    M. J. Feigenbaum,J. Stat. Phys. 46:919, 925 (1987).Google Scholar
  5. 5.
    T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and P. I. Schraiman,Phys. Rev. A 33:1141 (1986).Google Scholar
  6. 6.
    M. J. Feigenbaum, inProceedings of the 1987 Noto Summer School.Google Scholar
  7. 7.
    M. J. Feigenbaum, I. Procaccia, and T. Tel, The scaling properties of multifractals as an eigenvalue problem,Nonlinearity, submitted.Google Scholar
  8. 8.
    M. J. Feigenbaum,Phys. Lett. 74A:375 (1979).Google Scholar
  9. 9.
    M. J. Feigenbaum,Commun. Math. Phys. 77:65 (1980).Google Scholar
  10. 10.
    M. J. Feigenbaum, inNonlinear Phenomena in Chemical Dynamics, C. Vidal and A. Pecault, eds. (Springer-Verlag, 1981).Google Scholar
  11. 11.
    M. J. Feigenbaum, L. P. Kadanoff, and S. F. Shenker,Physica D 5:370 (1982).Google Scholar
  12. 12.
    D. Rand, S. Ostlund, J. Sethna, and E. Siggia,Physica D 5 (1982).Google Scholar
  13. 13.
    M. J. Feigenbaum, inNonlinear Phenomena in Physics, E. Claro, ed. (Springer-Verlag, 1984).Google Scholar
  14. 14.
    H. A. Gutowitz, J. D. Victor, and B. W. Knight,Physica 28D (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Mitchell J. Feigenbaum
    • 1
  1. 1.Rockefeller UniversityNew York

Personalised recommendations