Journal of Statistical Physics

, Volume 48, Issue 3–4, pp 873–900 | Cite as

Hard-sphere heat conductivity via nonequilibrium molecular dynamics

  • Karl W. Kratky
  • William G. Hoover


We use an Evans-Gillan driving forceFd, together with isokinetic and isoenergetic constraint forcesFc, to drive steady heat currents in periodic systems of 4 and 32 hard spheres. The additional driving and constraint forces produce curved trajectories as well as additional streaming and collisional contributions to the momentum and energy fluxes. Here we develop an analytic treatment of the collisions so that the simulation becomes approximately ten times faster than our previous numerical treatment. At low field strengthsλ, forλσ less than 0.4, whereσ is the hard-sphere diameter, the 32-sphere conductivity is consistent with Alder, Gass, and Wainwright's 108-sphere value. At higher field strengths the conductivity varies roughly asλ1/2, in parallel with the logarithmic dependence found previously for three hard disks.

Key words

Nonequilibrium molecular dynamics heat conductivity hard spheres 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Chapman and T. G. Cowling,The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, 1970).Google Scholar
  2. 2.
    B. J. Alder and T. E. Wainwright,J. Chem. Phys. 33:1439 (1960).Google Scholar
  3. 3.
    B. J. Alder, D. M. Gass, and T. E. Wainwright,J. Chem. Phys. 53:3813 (1970).Google Scholar
  4. 4.
    W. G. Hoover and B. J. Alder,J. Chem. Phys. 46:686 (1967).Google Scholar
  5. 5.
    W. G. Hoover and F. H. Ree,J. Chem. Phys. 49:3609 (1968).Google Scholar
  6. 6.
    H. S. Kang, C. S. Lee, T. Ree, and F. H. Ree,J. Chem. Phys. 84:4547 (1986).Google Scholar
  7. 7.
    W. G. Hoover,Phys. Today 37:44 (1984).Google Scholar
  8. 8.
    D. J. Evans and W. G. Hoover,Anna. Rev. Fluid Mech. 10:243 (1986).Google Scholar
  9. 9.
    D. J. Evans,Phys. Lett. 91A:457 (1982).Google Scholar
  10. 10.
    M. Dixon and M. J. Gillan,J. Phys. C 16:869 (1983).Google Scholar
  11. 11.
    W. G. Hoover, B. Moran, and J. Haile,J. Stat. Phys. 37:109 (1983).Google Scholar
  12. 12.
    W. G. Hoover, G. Ciccotti, G. Paolini, and C. Massobrio,Phys. Rev. A 32:3765 (1986).Google Scholar
  13. 13.
    W. G. Hoover and K. W. Kratky,J. Stat. Phys. 42:1103 (1986).Google Scholar
  14. 14.
    W. G. Hoover,J. Stat. Phys. 42:587 (1986).Google Scholar
  15. 15.
    K. W. Kratky,Phys. Rev. A 31:945 (1985).Google Scholar
  16. 16.
    K. W. Kratky, unpublished results.Google Scholar
  17. 17.
    J. J. Erpenbeck and W. W. Wood, inStatistical Mechanics, Part B, Bruce J. Berne, ed. (Plenum Press, New York, 1977).Google Scholar
  18. 18.
    R. Grover, W. G. Hoover, and B. Moran,J. Chem. Phys. 83:1255 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Karl W. Kratky
    • 1
  • William G. Hoover
    • 2
  1. 1.Institut für ExperimentalphysikUniversität WienWienAustria
  2. 2.Department of Applied ScienceUniversity of California at Davis, and Lawrence Livermore National LaboratoryLivermore

Personalised recommendations