Advertisement

Journal of Statistical Physics

, Volume 48, Issue 3–4, pp 677–708 | Cite as

Bond percolation in two and three dimensions: Numerical evaluation of time-dependent transport properties

  • G. A. van Velzen
  • M. H. Ernst
Articles

Abstract

For random walks on two- and three-dimensional cubic lattices, numerical results are obtained for the static,D(∞), and time-dependent diffusion coefficientD(t), as well as for the velocity autocorrelation function (VACF). The results cover all times and include linear and quadratic terms in the density expansions. Within the context of kinetic theory this is the only model in two and three dimensions for which the time-dependent transport properties have been calculated explicitly, including the long-time tails.

Key words

Lorentz gas random walk on disordered lattice ant in a labyrinth bond percolation random resistor network lattice Green's functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. H. Hauge, inTransport Phenomena, G. Kirczenov and J. Marro, eds. (Springer-Verlag, Berlin, 1974), p. 338; J. R. Dorfman and H. van Beijeren, inStatistical Mechanics, Part B.Time Dependent Processes, B. J. Berne, ed. (Plenum Press, New York, 1977); M. H. Ernst, inRecent Developments in Nonequilibrium Thermodynamics: Fluids and Related Topics, J. Casas-Vasquez, D. Jou, and J. M. Rubi, eds. (Springer-Verlag, Berlin, 1986), p. 175.Google Scholar
  2. 2.
    Th. M. Nieuwenhuizen, P. F. J. van Velthoven, and M. H. Ernst,Phys. Rev. Lett. 57:2477 (1986).Google Scholar
  3. 3.
    D. Frenkel,Phys. Lett. A 121:385 (1987).Google Scholar
  4. 4.
    M. H. Ernst, P. F. J. van Velthoven, and Th. M. Nieuwenhuizen,J. Phys. A 20:947 (1986).Google Scholar
  5. 5.
    M. H. Ernst and P. F. J. van Velthoven,J. Stat. Phys. 45:1001 (1986).Google Scholar
  6. 6.
    V. K. S. Shante and S. Kirkpatrick,Adv. Phys. 20:325 (1971); S. Kirkpatrick,Rev. Mod. Phys. 45:574 (1973); inIll-Condensed Matter, B. Balian, K. Maynard, and G.Toulouse, eds. (North-Holland, Amsterdam, 1979).Google Scholar
  7. 7.
    T. Odagaki, M. Lax, and A. Puri,Phys. Rev. B 28:2755 (1983); T. Odagaki,Phys. Rev. B 33:544 (1986).Google Scholar
  8. 8.
    M. Sahimi, B. D. Hughes, L. E. Scriven, and H. T. Davis,J. Chem. Phys. 78:6849 (1983).Google Scholar
  9. 9.
    J. W. Haus and K. W. Kehr,Phys. Rep. (1987), to appear.Google Scholar
  10. 10.
    U. M. S. Costa, C. Tsallis, and G. Schwachheim,Phys. Rev. B 33:510 (1986).Google Scholar
  11. 11.
    A. B. Harris and S. Kirkpatrick,Phys. Rev. B 16:542 (1977).Google Scholar
  12. 12.
    J. B. T. M. Roerdink and K. E. Schüler,J. Stat. Phys. 41:581 (1985); J. B. T. M. Roerdink,Physica 132A (1985).Google Scholar
  13. 13.
    M. H. Ernst,J. Stat. Phys. 48:645 (1987).Google Scholar
  14. 14.
    D. C. Hong, H. E. Stanley, A. Coniglio, and A. Bunde,Phys. Rev. B 33:4564 (1986).Google Scholar
  15. 15.
    T. Morita,J. Math. Phys. 12:1744 (1971).Google Scholar
  16. 16.
    G. L. Montet,Phys. Rev. B 7:650 (1973).Google Scholar
  17. 17.
    G. N. Watson,Q. J. Math. 10:266 (1939).Google Scholar
  18. 18.
    M. H. Ernst,Physica 140A:390 (1986).Google Scholar
  19. 19.
    J. P. Straley,Phys. Rev. B 15:5733 (1977).Google Scholar
  20. 20.
    K. Golden and G. Papanicolaou,Commun. Math. Phys. 90:473–491 (1983).Google Scholar
  21. 21.
    M. Abramowitz and I. Stegun,Handbook of Mathematical Functions (Dover, New York, 1970).Google Scholar
  22. 22.
    M. H. Ernst, G. A. van Velzen, and J. W. Dufty,Physica A, 1987.Google Scholar
  23. 23.
    J. J. Brey, to be submitted.Google Scholar
  24. 24.
    N. W. Ashcroft and N. D. Mermin,Solid State Physics (Saunders College, Philadelphia, 1976).Google Scholar
  25. 25.
    T. Morita and T. Horiguchi,J. Math. Phys. 12:981 (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • G. A. van Velzen
    • 1
  • M. H. Ernst
    • 1
    • 2
  1. 1.Instituut voor Theoretische FysicaRUUTA UtrechtThe Netherlands
  2. 2.Institute for Theoretical PhysicsUniversity of FloridaGainesville

Personalised recommendations