Advertisement

Theoretical and Mathematical Physics

, Volume 47, Issue 3, pp 514–532 | Cite as

Generating functional method and Gibbs random fields on countable sets

  • V. V. Krivolapova
  • G. I. Nazin
Article

Keywords

Random Field Functional Method Gibbs Random Field Generate Functional Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    H. Frohlich, H. Pelzer, and S. Zienau, “Properties of slow electrons in polar materials,” Philos. Mag.,41, 221 (1950): S. I. Pekar, Investigations in the Electron Theory of Crystals [in Russian], Gostekhizdat, Moscow (1951).Google Scholar
  2. 2.
    M. A. Krivoglaz and S. I. Pekar, “Trace method for conduction electrons in semiconductors. I. Weak interaction of the electrons with vibrations,” Izv. Akad. Nauk SSSR, Ser. Fiz.,21, 3 (1957).Google Scholar
  3. 3.
    M. A. Krivoglaz and S. I. Pekar, “Trace method for conduction electrons in semiconductors. II. Variational method,” Izv. Akad. Nauk SSSR, Ser. Fiz.,21, 16 (1957).Google Scholar
  4. 4.
    Y. Osaka, “Polaron state at a finite temperature,” Prog. Theor. Phys.,22, 437 (1959).Google Scholar
  5. 5.
    N. N. Bogolyubov, “Kinetic equations for the electron-phonon system,” Preprint E17-11822, JINR, Dubna (1978).Google Scholar
  6. 6.
    N. N. Bogolyubov and N. N. Bogolyubov (Jr), “Kinetic equation for a dynamical system interacting with a phonon field,” Fiz. Elem. Chastits At. Yadra,11, 245 (1980).Google Scholar
  7. 7.
    R. P. Feynman, “Mobility of slow electrons in a polar crystal,” Phys. Rev.,127, 1004 (1962).Google Scholar
  8. 8.
    R. P. Feynman, Statistical Mechanics: A Set of Lectures, Benjamin, New York (1972).Google Scholar
  9. 9.
    F. Haga, “Note on the slow electrons in a polar crystal,” Prog. Theor. Phys.,11, 449 (1954).Google Scholar
  10. 10.
    E. A. Kochetov and M. A. Smondyrev, “Expansions in inverse powers of the temperature in the polaron model,” Preprint R2-80-268 [in Russian], JINR, Dubna (1980).Google Scholar
  11. 11.
    E. A. Kochetov, S. P. Kuleshov, and M. A. Smondyrev, “Polaron as a model of an extended particle”, in: Proc. Tenth International School of Young Scientists, Baku, 1976 [in Russian], Soobshchenie D2-10533, JINR, Dubna (1977).Google Scholar
  12. 12.
    E. A. Kochetov and M. A. Smondyrev, “Polaron at finite temperature in an external electric field”, Preprint R2-80-328 [in Russian], JINR, Dubna (1980)Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • V. V. Krivolapova
  • G. I. Nazin

There are no affiliations available

Personalised recommendations