Advertisement

Journal of Statistical Physics

, Volume 50, Issue 5–6, pp 1167–1177 | Cite as

The supersymmetric transfer matrix for linear chains with nondiagonal disorder

  • F. Constantinescu
Articles

Abstract

A study is made of the supersymmetric transfer matrix of then-orbital linear chain with Gaussian nondiagonal and diagonal disorder in the matrix (Hubbard-Stratonovich) variables. This formalism is applied to the one-point Green's function. Invariant functions of supersymmetric matrices are discussed in Section 3.

Key words

Supersymmetric transfer matrix disordered systems Green's function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Parisi and G. Sourlas,Phys. Rev. Lett. 43:744 (1979).Google Scholar
  2. 2.
    K. B. Efetov,Adv. Phys. 32:53 (1983).Google Scholar
  3. 3.
    A. Klein, Supersymmetry and a two-dimensional reduction in random phenomena, inProceedings of the Second Workshop on Quantum Probability and Applications, Heidelberg 1984 (Springer Lecture Notes in Mathematics, to appear).Google Scholar
  4. 4.
    J. J. M. Verbaarshot, H. A. Weidenmüller, and M. R. Zirnbauer,Phys. Rep. 129:369 (1985).Google Scholar
  5. 5.
    M. Campanino and A. Klein,Commun. Math. Phys. 104:227 (1986).Google Scholar
  6. 6.
    A. Klein, F. Martinelli, and F. Perez,Commun. Math. Phys. 106:623 (1986).Google Scholar
  7. 7.
    F. Wegner,Z. Phys. B 34:327 (1979).Google Scholar
  8. 8.
    K. Ziegler, Preprint No. 241, Sonderforschungsbereich 123, Heidelberg (1983).Google Scholar
  9. 9.
    F. Constantinescu, G. Felder, K. Gawedzki, and A. Kupiainen,J. Stat. Phys. 48:365 (1987).Google Scholar
  10. 10.
    R. Oppermann and F. Wegner,Z. Phys. B 34:327 (1979).Google Scholar
  11. 11.
    G. Theodorou and M. H. Cohen,Phys. Rev. B 13:4597 (1976).Google Scholar
  12. 12.
    T. P. Eggarter and R. Riedinger,Phys. Rev. B 18:569 (1978).Google Scholar
  13. 13.
    F. Wegner,Z. Phys. B 49:297 (1983).Google Scholar
  14. 14.
    E. Brézin, Grassmann variables and supersymmetry in the theory of disordered systems, inLecture Notes in Physics, No. 216, L. Garrido, ed. (Springer, 1985).Google Scholar
  15. 15.
    F. Constantinescu, C. Paiva, and U. Scharffenberger, Supersymmetry versus Replica, Preprint, Frankfurt (1987), to appear inPhys. Lett. A.Google Scholar
  16. 16.
    L. Hörmander,An Introduction to Complex Analysis in Several Variables (Van Nostrand, Princeton, New Jersey, 1966).Google Scholar
  17. 17.
    K. B. Efetov,Sov. Phys. JETP 61:606 (1985).Google Scholar
  18. 18.
    M. Zirnbauer,Phys. Rev. B 34:6394 (1986).Google Scholar
  19. 19.
    P. March and A. Sznitman, Some connections between excursion theory and the discrete random Schrödinger equation, with applications to analyticity and smoothness properties of the density of states in one dimension, Preprint.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • F. Constantinescu
    • 1
  1. 1.Department of MathematicsJohann Wolfgang Goethe-UniversitätFrankfurt am MainWest Germany

Personalised recommendations