Journal of Statistical Physics

, Volume 50, Issue 5–6, pp 1069–1087 | Cite as

A first passage time problem for random walk occupancy

  • John T. Bendler
  • Menachem Dishon
  • Harry Kesten
  • George H. Weiss
Articles
  • 51 Downloads

Abstract

Two recent studies of diffusion and flow properties of polymers in a melt have suggested the problem of finding the average time form Brownian particles to leave a sphere for the first time, given that exited particles can also reenter the sphere. We prove that the asymptotic density (asm→∞) for the time to first emptiness of the sphere for zero-mean Brownian motion is a delta function, characterized by the exit timea(m/lnm)2/D,a being a constant andD being the dimension. The presence of a field leaves the delta-function form for the density, but changes the time dependence toa lnm, with only the constanta depending on the dimension. Simulations of the process suggest that the value ofm needed for the validity of the asymptotic result is orders of magnitude greater than 1000.

Key words

Brownian motion random walk occupancies reptation times first passage times 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Doi,J. Poly. Sci. (Phys.) 21:667 (1983).Google Scholar
  2. 2.
    W. W. Graessley,Adv. Poly. Sci. 47:67 (1982).Google Scholar
  3. 3.
    H. Scher and M. F. Schlesinger,J. Chem. Phys. 84:5922 (1986).Google Scholar
  4. 4.
    G. H. Weiss, J. T. Bendler, and M. F. Schlesinger,Macromolecules, to appear.Google Scholar
  5. 5.
    D. A. Darling and M. Kac,Trans. Am. Math. Soc. 84:444 (1957).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • John T. Bendler
    • 1
  • Menachem Dishon
    • 2
  • Harry Kesten
    • 3
  • George H. Weiss
    • 4
  1. 1.Polymer Physics and Engineering BranchGeneral Electric Corporate Research and DevelopmentSchenectady
  2. 2.Scientific Computing DivisionNational Bureau of StandardsGaithersburg
  3. 3.Department of MathematicsCornell UniversityIthaca
  4. 4.Division of Computer Research and TechnologyNational Institutes of HealthBethesda

Personalised recommendations