Theoretical and Mathematical Physics

, Volume 83, Issue 1, pp 402–418 | Cite as

Existence of the Boltzmann-Grad limit for an infinite system of hard spheres

  • V. I. Gerasimenko
  • D. Ya. Petrina
Article

Keywords

Hard Sphere Infinite System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    N. N. Bogolyubov, “Problems of a dynamical theory in statistical physics,” in: Studies in Statistical Mechanics, Vol. 1 (eds. J. de Boer and G. E. Uhlenbeck), North-Holland, Amsterdam (1962).Google Scholar
  2. 2.
    D. Ya. Petrina, V. I. Gerasimenko, and P. V. Malyshev, Mathematical Foundations of Classical Statistical Mechanics [in Russian], Naukova Dumka, Kiev (1985).Google Scholar
  3. 3.
    D. Ya. Petrina, Teor. Mat. Fiz.,38, 230 (1979).Google Scholar
  4. 4.
    H. Grad, Handbuch der Physik. Band 12, Springer, Berlin (1958), pp. 205–294.Google Scholar
  5. 5.
    V. I. Gerasimenko and D. Ya. Petrina, Teor. Mat. Fiz.,64, 130 (1985); D. Ya. Petrina and V. I. Gerasimenko, “Evolution of a three-dimensional infinite hard core system,” Preprint ITP-84-117E [in English] (1984).Google Scholar
  6. 6.
    O. E. Lanford, Lecture Notes in Physics,38, 1 (1975); J. L. Lebowitz and E. W. Montroll (eds.), Nonequilibrium Phenomena I. The Boltzmann Equation, Studies in Statistical Mechanics, Vol. 19, North-Holland, Amsterdam (1983).Google Scholar
  7. 7.
    M. Shinbrot, Math. Meth. in Appl. Sci.,6, 539 (1984).Google Scholar
  8. 8.
    R. Illner and M. Pulvirenti, Commu. Math. Phys.,105, 189 (1986); M. Pulvirenti, Commun. Math. Phys.,113, 79 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • V. I. Gerasimenko
  • D. Ya. Petrina

There are no affiliations available

Personalised recommendations