Advertisement

Theoretical and Mathematical Physics

, Volume 88, Issue 2, pp 833–848 | Cite as

Construction of equations for classical equilibrium correlation Green's functions on the basis of kinetic equations. I

  • G. O. Balabanyan
Article
  • 39 Downloads

Keywords

Kinetic Equation Equilibrium Correlation Classical Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    G. O. Balabanyan, Teor. Mat. Fiz.,80, 118, 452 (1989).Google Scholar
  2. 2.
    D. N. Zubarev, Nonequilibrium Statistical Thermodynamics, Plenum, New York (1974).Google Scholar
  3. 3.
    D. N. Zubarev, “Modern methods of the statistical theory of nonequilibrium processes,” in: Reviews of Science and Technology, Modern Problems of Mathematics, Vol. 15 [in Russian], VINITI, Moscow (1980), pp. 131–226.Google Scholar
  4. 4.
    D. N. Zubarev and Yu. A. Tserkovnikov, “The method of two-time thermal Green's functions in equilibrium and nonequilibrium statistical mechanics,” in: Proc. of the V. A. Steklov Mathematics Institute, USSR Academy of Sciences, Vol. 175, No. 3 [in Russian], Nauka, Moscow (1986), pp. 134–177.Google Scholar
  5. 5.
    H. Mori, Prog. Theor. Phys.,33, 423 (1965).Google Scholar
  6. 6.
    L. Onsager, Phys. Rev., No. 2, 405 (1931);38, 2265 (1931).Google Scholar
  7. 7.
    D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions, Benjamin, New York (1975).Google Scholar
  8. 8.
    R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, Wiley-Interscience, New York (1975).Google Scholar
  9. 9.
    P. M. V. Résibois and M. De Leener, Classical Kinetic, Theory of Fluids, Wiley-Interscience, New York (1977).Google Scholar
  10. 10.
    J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases, Amsterdam (1972).Google Scholar
  11. 11.
    N. N. Bogolyubov and N. N. Bogolyubov (Jr), Introduction to Quantum Statistical Mechanics [in Russian], Nauka, Moscow (1984).Google Scholar
  12. 12.
    V. A. Rudyak, Statistical Theory of Dissipative Processes in Gases and Liquids [in Russian], Nauka, Novosibrisk (1987).Google Scholar
  13. 13.
    P. Grey, “Kinetic, theory of transport phenomena,” in: Physics of Simple Liquids (H. N. V. Temperley and G. S. Rushbrooke, eds.), North-Holland, Amsterdam (1968).Google Scholar
  14. 14.
    D. N. Zubarev and M. Yu. Novikov, Teor. Mat. Fiz.,18, 78 (1974).Google Scholar
  15. 15.
    D. N. Zubarev, Usp. Fiz. Nauk,71, 71 (1960).Google Scholar
  16. 16.
    V. L. Bonch-Bruevich and S. V. Tyablikov, The Green's Function Method in Statistical Mechanics, North-Holland Publ. Co., Amsterdam (1962).Google Scholar
  17. 17.
    N. N. Bogolyubov (Jr) and B. I. Sadovnikov, Some Problems of Statistical Mechanics [in Russian], Vysshaya Shkola, Moscow (1975).Google Scholar
  18. 18.
    G. O. Balabanyan, Teor. Mat. Fiz.,82, 117 (1990).Google Scholar
  19. 19.
    G. O. Balabanyan, Teor. Mat. Fiz.,84, 471 (1990).Google Scholar
  20. 20.
    N. N. Bogolyubov, “Problems of a dynamical theory in statistical physics,” in: Studies in Statistical Mechanics, Vol. 1 (eds. J. de Boer and G. E. Uhlenbeck), North-Holland, Amsterdam (1962).Google Scholar
  21. 21.
    Yu. L. Klimontovich, Statistical Physics [in Russian], Nauka, Moscow (1982).Google Scholar
  22. 22.
    Yu. L. Klimontovich, Kinetic Theory of Nonideal Gases and Nonideal Plasmas [in Russian], Nauka, Moscow (1975).Google Scholar
  23. 23.
    G. O. Balabanyan, Teor. Mat. Fiz.,82, 117 (1990).Google Scholar
  24. 24.
    G. O. Balabanyan, Teor. Mat. Fiz.,82, 287 (1990).Google Scholar
  25. 25.
    G. O. Balabanyan, Teor. Mat. Fiz.,82, 450 (1990).Google Scholar
  26. 26.
    G. O. Balabanyan, Teor. Mat. Fiz.,83, 311 (1990).Google Scholar
  27. 27.
    G. O. Balabanyan, Teor. Mat. Fiz.,85, 102 (1990).Google Scholar
  28. 28.
    V. S. Vladimirov, The Equations of Mathematical Physics [in Russian], Nauka, Moscow (1981).Google Scholar
  29. 29.
    V. S. Vladimirov, Generalized Functions in Mathematical Physics [in Russian], Nauka, Moscow (1979).Google Scholar
  30. 30.
    P. Resibois, J. Stat. Phys.,19, 593 (1978).Google Scholar
  31. 31.
    D. N. Zubarev and V. G. Morozov, Teor. Mat. Fiz.,60, 270 (1984).Google Scholar
  32. 32.
    S. A. Rice and A. Allnatt, J. Phys.,34, 2144 (1961).Google Scholar
  33. 33.
    S. A. Rice and P. Grey, The Statistical Mechanics of Simple Liquids, Interscience, New York (1965).Google Scholar
  34. 34.
    I. Prigogine, G. Nicolis, and J. Misguich, J. Chem. Phys.,43, 4516 (1965).Google Scholar
  35. 35.
    J. Misquich and G. Nicolis, Mol. Phys.,24, 309 (1972).Google Scholar
  36. 36.
    M. H. Ernst, J. R. Dorfman, W. R. Hoegi, and J. M. J. Van Leewen, Physica (Utrecht),45, 127 (1969).Google Scholar
  37. 37.
    N. N. Bogolyubov, Fiz. Elem. Chastits At. Yadra,9, 501 (1978); J. L. Lebowitz, J. K. Percus, and J. Sykes, Phys. Rev.,188, 487 (1969).Google Scholar
  38. 39.
    Yu. N. Borabanenkov, V. D. Ozrin, and A. V. Shelest, Teor. Mat. Fiz.,45, 80 (1980).Google Scholar
  39. 40.
    H. H. V. Konijnendijk and J. M. J. Van Leewen, Physica (Utrecht),64, 342 (1973).Google Scholar
  40. 41.
    P. M. Furtado, G. F. Mazenko, and S. Yip, Phys. Rev. A,12, 1653 (1975).Google Scholar
  41. 42.
    J. Sykes, J. Stat. Phys.,8, 279 (1973).Google Scholar
  42. 43.
    E. Leutheusser, J. Phys. C,15, 2801 (1982).Google Scholar
  43. 44.
    E. Leutheusser, J. Phys. C,15, 2827 (1982).Google Scholar
  44. 45.
    P. M. Furtado, G. F. Mazenko, and S. Yip, Phys. Rev. A,13, 1641 (1976).Google Scholar
  45. 46.
    S. Yip, W. E. Alley, and B. J. Alder, J. Stat. Phys.,27, 201 (1982).Google Scholar
  46. 47.
    J. P. Boon and S. Yip, Molecular Hydrodynamics, McGraw-Hill, New York (1980).Google Scholar
  47. 48.
    W. E. Alley and B. J. Alder, Phys. Rev. A,27, 3158 (1983).Google Scholar
  48. 49.
    W. E. Alley, B. J. Alder, and S. Yip, Phys. Rev. A,27, 3174 (1983).Google Scholar
  49. 50.
    B. J. Alder and W. E. Alley, Physics Today,37, 56 (1984).Google Scholar
  50. 51.
    C. Cergignani, Mathematical Methods in Kinetic, Theory, Plenum, New York (1969).Google Scholar
  51. 52.
    G. O. Balabanyan, Teor. Mat. Fiz.,86, 460 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • G. O. Balabanyan

There are no affiliations available

Personalised recommendations