Theoretical and Mathematical Physics

, Volume 96, Issue 3, pp 1099–1109 | Cite as

Critical exponents of Ising-like systems in general dimensions

  • Yu. Holovatch


Critical exponents of Ising-like systems are calculated for the case where the dimension of space is non-integer. Calculations are performed within the framework of the fixed-dimension field theoretical approach. Renormalization group functions in the Callan-Symanzik scheme are considered directly in non-integer dimensions. Perturbation theory expansions are resummed with the use of the Pade-Borel transformation.


Perturbation Theory Theoretical Approach Renormalization Group General Dimension Critical Exponent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Wilson K.G., Fisher M.E., Phys. Rev. Lett.28 (1972), no. 4, 240–243.Google Scholar
  2. [2]
    Wilson K.G., Kogut J., Phys. Rep.C12 (1974), no. 2, 75–199.Google Scholar
  3. [3]
    Brezin E., Le Guillou J.C., Zinn-Justin J.,Phase Transitions and Critical Phenomena, Academic Press, New York, 1975.Google Scholar
  4. [4]
    Ma S.-K.,Modern theory of critical phenomena, Benjamin Reading, MA, 1976.Google Scholar
  5. [5]
    Wallace D.J., Zia R.K.P., Phys. Rev. Lett.43 (1979). no. 12, 808–812.Google Scholar
  6. [6]
    Forster D., Gabriunas A., Phys. Rev.A23 (1981), no. 5, 2627–2633.Google Scholar
  7. [7]
    Forster D., Gabriunas A., Phys. Rev.A24 (1981), no. 1, 598–600.Google Scholar
  8. [8]
    Bruce A.D., Wallace D.J., Phys. Rev. Lett.47 (1981), no. 24, 1743–1746.Google Scholar
  9. [9]
    Khmelnitskii D.E., ZhETF.68 (1975), no. 5, 1960–1968. (Russian)Google Scholar
  10. [10]
    Grinstein G., Luther A., Phys. Rev.B13 (1976), no. 3, 1329–1343.Google Scholar
  11. [11]
    Fisher M.E., Gaunt D.S., Phys. Rev.133 (1964), no. 1A, A224-A239.Google Scholar
  12. [12]
    Katz S.L., Droz M., Gunton J.D., Phys. Rev.B15, (1977), no. 3, 1597–1599.Google Scholar
  13. [13]
    Le Guillou J.C., Zinn-Justin J., J. Phys. (Paris).48 (1987), no. 1, 19–24.Google Scholar
  14. [14]
    Gorishny S.G., Larin S.A., Tkachov F.V., Phys. Lett.A101 (1984), no. 3, 120–123.Google Scholar
  15. [15]
    Gefen Y., Mandelbrot B., Aharony A., Phys. Rev. Lett.45 (1980), no. 11, 855–858.Google Scholar
  16. [16]
    Bonnier B., Leroyer Y., Meyers C., Phys. Rev.B37 (1988), no. 10A, 5205–5210.Google Scholar
  17. [17]
    Bonnier B., Leroyer Y., Meyers C., Phys. Rev.B40 (1989), no. 13, 8961–8966.Google Scholar
  18. [18]
    Bonnier B., Hontebeyrie M., J. Phys. (Paris).11 (1991), no. 1, 5205–5210.Google Scholar
  19. [19]
    Novotny M.A., Europhys. Lett.17 (1992), no. 4, 297–302.Google Scholar
  20. [20]
    Novotny M.A., Phys. Rev.B46 (1992), no. 5, 2939–2950.Google Scholar
  21. [21]
    Novotny M.A.,What is the scaling dimension of finite systems?, Preprint FSU-SCRI-92-111, Florida State University, 1992.Google Scholar
  22. [22]
    Mandelbrot B.B.,Fractals: form, chance, and dimension, W.H.Freeman & Co., San Francisco, 1977.Google Scholar
  23. [23]
    Mandelbrot B.B.,The fractal geometry of nature, W.H.Freeman & Co., 1983.Google Scholar
  24. [24]
    Holovatch Yu., Shpot M.,Critical behaviour of dilute Ising-like systems in non-integer dimensions, Preprint ITP-90-48E, Kiev, Institute for theoretical physics of the Ukrainian Acad. Sci., 1990.Google Scholar
  25. [25]
    Holovatch Yu., Shpot M., J. Stat. Phys.66 (1992), no. 3/4, 847–863.Google Scholar
  26. [26]
    Parisi G., J. Stat. Phys.23 (1980), no. 1, 49–82.Google Scholar
  27. [27]
    Le Guillou J.C., Zinn-Justin J., Phys. Rev.B21 (1980), no. 9, 3976–3998.Google Scholar
  28. [28]
    Amit D.J.,Field theory, the renormalization group, and critical phenomena, McGraw-Hill Int. Book Co., New York, 1978.Google Scholar
  29. [29]
    Holovatch Yu.,Phase transition in continuous symmetry model in general dimension: fixed dimension renormalization group approach, Preprint SPhT/92-123, C.E. de Saclay, Service de Physique Theorique, 1992.Google Scholar
  30. [30]
    Holovatch Yu., Krokhmalskii T.,Compilation of 2-pt and 4-pt graphs in field theory in non-integer dimensions, Preprint ICMP-92-3E, Lviv, Institute for Condensed Matter Physics, 1992.Google Scholar
  31. [31]
    Brezin E., Le Guillou J.C., Zinn-Justin J., Nickel B.G., Phys. Lett.A44 (1973), no. 4, 227–228.Google Scholar
  32. [32]
    Le Guillou J.C., Zinn-Justin J., Phys. Rev. Lett.39 (1977), no. 2, 95–98.Google Scholar
  33. [33]
    Abramowitz M., Stegun A.I.,Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, National Bureau of Standards, 1964.Google Scholar
  34. [34]
    Schafer L., von Ferber C., Lehr U., Duplantier B., Nucl. Phys.B374 (1992), 473–495.Google Scholar
  35. [35]
    Baker G.A., Jr., Nickel B.G., Meiron D.I., Phys. Rev.B17 (1978), no. 3, 1365–1374.Google Scholar
  36. [36]
    Philippov A.E., Radievskii A.V., ZhETF.,102, (1992) no. 6(12), 1899–1920. (Russian).Google Scholar
  37. [37]
    Breus S.A., Filippov A.E., Physica.A192 (1992), 486–515.Google Scholar
  38. [38]
    Baker, Jr. G.A., Benofy L.P., J. Stat. Phys.29 (1982), no. 4, 699–716.Google Scholar
  39. [39]
    Mayer I.O., J. Phys.A22 (1989), 2815–2833.Google Scholar
  40. [40]
    Mayer I.O., Sokolov A.I., Shalaev B.N., Ferroelectrics95 (1989), no. 1, 93–96.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Yu. Holovatch

There are no affiliations available

Personalised recommendations