Theoretical and Mathematical Physics

, Volume 96, Issue 3, pp 1099–1109 | Cite as

Critical exponents of Ising-like systems in general dimensions

  • Yu. Holovatch


Critical exponents of Ising-like systems are calculated for the case where the dimension of space is non-integer. Calculations are performed within the framework of the fixed-dimension field theoretical approach. Renormalization group functions in the Callan-Symanzik scheme are considered directly in non-integer dimensions. Perturbation theory expansions are resummed with the use of the Pade-Borel transformation.


Perturbation Theory Theoretical Approach Renormalization Group General Dimension Critical Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Wilson K.G., Fisher M.E., Phys. Rev. Lett.28 (1972), no. 4, 240–243.Google Scholar
  2. [2]
    Wilson K.G., Kogut J., Phys. Rep.C12 (1974), no. 2, 75–199.Google Scholar
  3. [3]
    Brezin E., Le Guillou J.C., Zinn-Justin J.,Phase Transitions and Critical Phenomena, Academic Press, New York, 1975.Google Scholar
  4. [4]
    Ma S.-K.,Modern theory of critical phenomena, Benjamin Reading, MA, 1976.Google Scholar
  5. [5]
    Wallace D.J., Zia R.K.P., Phys. Rev. Lett.43 (1979). no. 12, 808–812.Google Scholar
  6. [6]
    Forster D., Gabriunas A., Phys. Rev.A23 (1981), no. 5, 2627–2633.Google Scholar
  7. [7]
    Forster D., Gabriunas A., Phys. Rev.A24 (1981), no. 1, 598–600.Google Scholar
  8. [8]
    Bruce A.D., Wallace D.J., Phys. Rev. Lett.47 (1981), no. 24, 1743–1746.Google Scholar
  9. [9]
    Khmelnitskii D.E., ZhETF.68 (1975), no. 5, 1960–1968. (Russian)Google Scholar
  10. [10]
    Grinstein G., Luther A., Phys. Rev.B13 (1976), no. 3, 1329–1343.Google Scholar
  11. [11]
    Fisher M.E., Gaunt D.S., Phys. Rev.133 (1964), no. 1A, A224-A239.Google Scholar
  12. [12]
    Katz S.L., Droz M., Gunton J.D., Phys. Rev.B15, (1977), no. 3, 1597–1599.Google Scholar
  13. [13]
    Le Guillou J.C., Zinn-Justin J., J. Phys. (Paris).48 (1987), no. 1, 19–24.Google Scholar
  14. [14]
    Gorishny S.G., Larin S.A., Tkachov F.V., Phys. Lett.A101 (1984), no. 3, 120–123.Google Scholar
  15. [15]
    Gefen Y., Mandelbrot B., Aharony A., Phys. Rev. Lett.45 (1980), no. 11, 855–858.Google Scholar
  16. [16]
    Bonnier B., Leroyer Y., Meyers C., Phys. Rev.B37 (1988), no. 10A, 5205–5210.Google Scholar
  17. [17]
    Bonnier B., Leroyer Y., Meyers C., Phys. Rev.B40 (1989), no. 13, 8961–8966.Google Scholar
  18. [18]
    Bonnier B., Hontebeyrie M., J. Phys. (Paris).11 (1991), no. 1, 5205–5210.Google Scholar
  19. [19]
    Novotny M.A., Europhys. Lett.17 (1992), no. 4, 297–302.Google Scholar
  20. [20]
    Novotny M.A., Phys. Rev.B46 (1992), no. 5, 2939–2950.Google Scholar
  21. [21]
    Novotny M.A.,What is the scaling dimension of finite systems?, Preprint FSU-SCRI-92-111, Florida State University, 1992.Google Scholar
  22. [22]
    Mandelbrot B.B.,Fractals: form, chance, and dimension, W.H.Freeman & Co., San Francisco, 1977.Google Scholar
  23. [23]
    Mandelbrot B.B.,The fractal geometry of nature, W.H.Freeman & Co., 1983.Google Scholar
  24. [24]
    Holovatch Yu., Shpot M.,Critical behaviour of dilute Ising-like systems in non-integer dimensions, Preprint ITP-90-48E, Kiev, Institute for theoretical physics of the Ukrainian Acad. Sci., 1990.Google Scholar
  25. [25]
    Holovatch Yu., Shpot M., J. Stat. Phys.66 (1992), no. 3/4, 847–863.Google Scholar
  26. [26]
    Parisi G., J. Stat. Phys.23 (1980), no. 1, 49–82.Google Scholar
  27. [27]
    Le Guillou J.C., Zinn-Justin J., Phys. Rev.B21 (1980), no. 9, 3976–3998.Google Scholar
  28. [28]
    Amit D.J.,Field theory, the renormalization group, and critical phenomena, McGraw-Hill Int. Book Co., New York, 1978.Google Scholar
  29. [29]
    Holovatch Yu.,Phase transition in continuous symmetry model in general dimension: fixed dimension renormalization group approach, Preprint SPhT/92-123, C.E. de Saclay, Service de Physique Theorique, 1992.Google Scholar
  30. [30]
    Holovatch Yu., Krokhmalskii T.,Compilation of 2-pt and 4-pt graphs in field theory in non-integer dimensions, Preprint ICMP-92-3E, Lviv, Institute for Condensed Matter Physics, 1992.Google Scholar
  31. [31]
    Brezin E., Le Guillou J.C., Zinn-Justin J., Nickel B.G., Phys. Lett.A44 (1973), no. 4, 227–228.Google Scholar
  32. [32]
    Le Guillou J.C., Zinn-Justin J., Phys. Rev. Lett.39 (1977), no. 2, 95–98.Google Scholar
  33. [33]
    Abramowitz M., Stegun A.I.,Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, National Bureau of Standards, 1964.Google Scholar
  34. [34]
    Schafer L., von Ferber C., Lehr U., Duplantier B., Nucl. Phys.B374 (1992), 473–495.Google Scholar
  35. [35]
    Baker G.A., Jr., Nickel B.G., Meiron D.I., Phys. Rev.B17 (1978), no. 3, 1365–1374.Google Scholar
  36. [36]
    Philippov A.E., Radievskii A.V., ZhETF.,102, (1992) no. 6(12), 1899–1920. (Russian).Google Scholar
  37. [37]
    Breus S.A., Filippov A.E., Physica.A192 (1992), 486–515.Google Scholar
  38. [38]
    Baker, Jr. G.A., Benofy L.P., J. Stat. Phys.29 (1982), no. 4, 699–716.Google Scholar
  39. [39]
    Mayer I.O., J. Phys.A22 (1989), 2815–2833.Google Scholar
  40. [40]
    Mayer I.O., Sokolov A.I., Shalaev B.N., Ferroelectrics95 (1989), no. 1, 93–96.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Yu. Holovatch

There are no affiliations available

Personalised recommendations