Advertisement

Theoretical and Mathematical Physics

, Volume 96, Issue 3, pp 1069–1078 | Cite as

Cooper pairing in multilayer polar structures

  • E. P. Pokatilov
  • V. M. Fomin
Article
  • 34 Downloads

Abstract

The Hamiltonian of the electron-phonon interaction with polar optical vibrations in multilayer structures is used to derive a Hamiltonian that describes, through the introduction of unitary transformations of Bogolyubov type, the formation of pairs of electrons with opposite spins and 2D wave vectors. The distribution function for the considered systems is derived using Zubarev's nonequilibrium statistical operator method. An evolution equation is obtained for the distribution function, and under certain simplifying assumptions an integral equation for the superconducting energy gap is obtained. The parameters of some structures are used in a numerical investigation of the temperature dependence of the gap for different thicknesses of the conducting layer. It is shown that some of the structures may be candidates for high-temperature superconductors.

Keywords

Integral Equation Evolution Equation Wave Vector Numerical Investigation Operator Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. L. Gammel, L. F. Schneemeyer, J. W. Waszczak, and D. J. Bishop,Phys. Rev. Lett.,61, 1666 (1988).Google Scholar
  2. 2.
    D. E. Farrell, J. R. Rice, and D. M. Ginsberg,Phys. Rev. Lett.,67, 1165 (1991).Google Scholar
  3. 3.
    D. R. Nelson,Phyr. Rev. Lett.,60, 1973 (1988).Google Scholar
  4. 4.
    D. R. Nelson and H. S. Seung,Phys. Rev. B,39, 9153 (1989).Google Scholar
  5. 5.
    M. C. Marchetti and D. R. Nelson,Phys. Rev. B,41, 1910 (1990).Google Scholar
  6. 6.
    A. Houghton, R. A. Pelcovits, and A. Sudbo,Phys. Rev. B,40, 6763 (1989).Google Scholar
  7. 7.
    D. S. Fisher, M. P. A. Fisher, and D. A. Huse,Phys. Rev. B,43 130 (1991).Google Scholar
  8. 8.
    S. Ryu, S. Doniach, G. Deutecher, and A. Kapitulnik,Phys. Rev. Lett.,68, 710 (1992).Google Scholar
  9. 9.
    C. A. Murray, P. L. Gammel, D. J. Bishop, D. B. Mitzi, and A. Kapitulnik,Phys. Rev. Lett.,64, 2312 (1990).Google Scholar
  10. 10.
    C. A. Bolle, P. L. Gammel, D. G. Grier, C. A. Murray, D. J. Bishop, D. B. Mutzi, and A. Kaptitulnik,Phys. Rev. Lett.,66, 112 (1991).Google Scholar
  11. 11.
    V. N. Ryzhov and E. E. Tareyeva,Physica (Utrecht) C,205, 55 (1993).Google Scholar
  12. 12.
    R. N. Kleiman, P. L. Gammel, L. F. Schneemeyer, J. V. Waszczak, and D. J. Bishop,Phys. Rev. Lett.,62, 2331 (1989).Google Scholar
  13. 13.
    T. Nattermann, M. Feigelman, and I. Lyuksyutov,Z. Phys. B,84, 353 (1991).Google Scholar
  14. 14.
    T. Schneider,Z. Phys. B,85, 187 (1991).Google Scholar
  15. 15.
    P. Minnhagen,Phys. Rev. B,27, 2807 (1983);28, 2463 (1983);29, 1440 (1984).Google Scholar
  16. 16.
    J. C. Garland and Hu Jong Lee,Phys. Rev. B,36, 3638 (1987).Google Scholar
  17. 17.
    Y. Matsuda,Phys. Rev. Lett.,69, 3228 (1992).Google Scholar
  18. 18.
    J. M. P. Hsu and A. Kapitulnik,Phys. Rev. B,45, 4819 (1992).Google Scholar
  19. 19.
    J. M. Kosterlitz and D. J. Thouless,J. Phys. C,6, 1181 (1973).Google Scholar
  20. 20.
    J. M. Kosterlitz,J. Phys. C,7, 1046 (1974).Google Scholar
  21. 21.
    P. Minnhagen,Rev. Mod. Phys.,59, 1001 (1987).Google Scholar
  22. 22.
    B. I. Halperin and D. R. Nelson,J. Low Temp. Phys.,36, 599 (1979).Google Scholar
  23. 23.
    J. Pearl,Appl. Phys. Lett.,5, 65 (1964).Google Scholar
  24. 24.
    J. Pearl, in:Low Temperature Physics LT9 (eds. J. G. Daunt et al.), Plenum Press, New York, p. 566.Google Scholar
  25. 25.
    R. Balescu,Statistical Mechanics of Charged Particles, London (1963).Google Scholar
  26. 26.
    J. E. Mayer and M. G. Mayer,Statistical Mechanics, Wiley, New York (1940).Google Scholar
  27. 27.
    R. P. Feynman,Lectures on Statistical Mechanics, Benjamin, New York (1971).Google Scholar
  28. 28.
    R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals, New York (1965).Google Scholar
  29. 29.
    A. A. Abrikosov,Zh. Eksp. Teor. Fiz.,32, 1442 (1957).Google Scholar
  30. 30.
    K. Maki,Ann. Phys. (N. Y.),34, 363 (1965).Google Scholar
  31. 31.
    V. N. Ryzhov and E. E. Tareyeva,Phys. Rev. B (1993) (in print).Google Scholar
  32. 32.
    M. Tinkkham,Introduction to Superconductivity [in Russian], Atomizdat, Moscow (1980).Google Scholar
  33. 33.
    V. N. Ryzhov,Zh. Eksp. Teor. Fiz.,100, 1627 (1991).Google Scholar
  34. 34.
    V. N. Ryzhov and E. E. Tareyeva,J. Phys. C,21, 819 (1988).Google Scholar
  35. 35.
    V. N. Ryzhov and E. E. Tareeva,Teor. Mat. Fiz.,73, 463 (1987).Google Scholar
  36. 36.
    V. N. Ryshov and E. E. Tareyeva,Phys. Lett. A,158, 321 (1991).Google Scholar
  37. 37.
    V. N. Ryzhov and E. E. Tareeva,Teor. Mat. Fiz.,92, 331 (1992).Google Scholar

References

  1. 1.
    V. L. Ginzburg and D. A. Kirzhnits,Dokl. Akad. Nauk SSSR,176, 553 (1967);Usp. Fiz. Nauk,95, 91 (1968);Zh. Eksp. Teor. Fiz.,46, 397 (1964);Phys. Rev.,4, 343 (1972).Google Scholar
  2. 2.
    V. L. Ginzburg,Usp. Fiz. Nauk,101, 185 (1970).Google Scholar
  3. 3.
    D. Allender, Y. Bray, and J. Bardeen,Phys. Rev. B,7, 1020 (1973).Google Scholar
  4. 4.
    Y. C. Phillips,Phys. Rev. Lett.,29, 551 (1972).Google Scholar
  5. 5.
    R. Fuchs and K. K. Kliewer,Phys. Rev.,140, 2076 (1965).Google Scholar
  6. 6.
    E. P. Pokatilov, S. I. Beril, V. M. Fomin, and G. Iy. Ryabukhin,Phys. Status Solidi B,169, 429 (1992).Google Scholar
  7. 7.
    E. P. Pokatilov, S. I. Beril, V. M. Fomin, G. Iy. Ryabukhin, and E. R. Goryachovskii,Phys. Status Solidi B,171, 437 (1992).Google Scholar
  8. 8.
    E. P. Pokatilov, V. M. Fomin, and S. I. Beril,Vibrational Excitations, Polarons, and Excitons in Multilayer Structures and Superlattices [in Russian], Shtiintsa, Kishinev (1990).Google Scholar
  9. 9.
    V. M. Fomin and E. P. Pokatilov,Phys. Status Solidi B,128, 251 (1986).Google Scholar
  10. 10.
    V. M. Fomin and E. P. Pokatilov,Phys. Status Solidi B,129, 203 (1985).Google Scholar
  11. 11.
    V. M. Fomin and E. P. Pokatilov,Phys. Status Solidi B,132, 69 (1985).Google Scholar
  12. 12.
    V. M. Fomin and E. P. Pokatilov,Phys. Rep.,158, 205 (1988).Google Scholar
  13. 13.
    D. N. Zubarev,Nonequilibrium Statistical Thermodynamics, Plenum, New York (1974).Google Scholar
  14. 14.
    V. G. Bar'yakhtar, N. N. Bykova, and V. P. Seminoshenko,Teor. Mat. Fiz.,38, 251 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • E. P. Pokatilov
  • V. M. Fomin

There are no affiliations available

Personalised recommendations