Theoretical and Mathematical Physics

, Volume 91, Issue 2, pp 514–521 | Cite as

Higher symmetries of the Schrödinger equation

  • A. G. Nikitin
  • S. P. Onufriichuk
  • V. I. Fushchich


Complete sets of symmetry operators of arbitrary finite order are found for the Schrödinger equation with some types of potential, including the potential of a supersymmetric harmonic oscillator. Potentials that admit nontrivial higher symmetries are described.


Harmonic Oscillator High Symmetry Finite Order Symmetry Operator Arbitrary Finite Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. H. Anderson and N. H. Ibragimov,Lie—Bäcklund Transformations in Applications, SIAM, Philadelphia (1979).Google Scholar
  2. 2.
    W. I. Fushchich and A. G. Nikitin,J. Phys. A,20, 537 (1987).Google Scholar
  3. 3.
    V. I. Fushchich and A. G. Nikitin,Symmetry of the Equations of Quantum Mechanics [in Russian], Nauka, Moscow (1990).Google Scholar
  4. 4.
    W. Miller (Jr.),Symmetry and Separation of Variables [Russian translation], Mir, Moscow (1981).Google Scholar
  5. 5.
    V. N. Shapovalov and G. G. Ékle,Algebraic Properties of the Dirac Equation [in Russian], Kalmyk State University, Élista (1972).Google Scholar
  6. 6.
    E. G. Kalnins, W. Miller (Jr.) and G. C. Williams,J. Math. Phys.,27, 1893 (1986).Google Scholar
  7. 7.
    M. Fels and N. Kamran,Proc. R. Soc. London, Ser. A.,428, 229 (1990).Google Scholar
  8. 8.
    A. G. Nikitin,Ukr. Mat. Zh.,43, 786 (1991).Google Scholar
  9. 9.
    A. G. Nikitin,Ukr. Mat. Zh.,43, 1388 (1991).Google Scholar
  10. 10.
    A. G. Nikitin,Ukr. Mat. Zh.,43, 1521 (1991).Google Scholar
  11. 11.
    J. Beckers, N. Debergh, and A. G. Nikitin,J. Phys. A,24, L1269 (1991).Google Scholar
  12. 12.
    U. Niederer,Helv. Phys. Acta,45, 802 (1972).Google Scholar
  13. 13.
    R. H. Anderson, S. Kumei, and C. E. Wulfman,Rev. Mex. Fis.,21, 1 (1972).Google Scholar
  14. 14.
    C. P. Boyer,Helv. Phys. Acta,47, 589 (1979).Google Scholar
  15. 15.
    V. G. Bagrov and D. M. Gitman,Exact Solutions of Relativistic Waye Equations, Kluwer Acad. Publ., Dordrecht (1990).Google Scholar
  16. 16.
    V. I. Smirnov,Course of Higher Mathematics, Vol. 2 [in Russian], Nauka, Moscow (1967).Google Scholar
  17. 17.
    E. Witten,Nucl. Phys. B,188, 513 (1981).Google Scholar
  18. 18.
    J. Beckers and N. Debergh,Helv. Phys. Acta,64, 24 (1991).Google Scholar
  19. 19.
    J. Beckers, N. Debergh, and A. G. Nikitin,J. Math. Phys.,33, No. 1 (1992).Google Scholar
  20. 20.
    E. Kamke, Spravochnik po obuknovennym differentsial'nym uraveniyam (Handbook of Ordinary Differential Equations), Russian translation published by Izd-vo Inostr. Lit., Moscow (1951).Google Scholar
  21. 21.
    Z. Flügge,Practical Quantum Mechanics, Vol. 1, Springer Verlag, Berlin (1971).Google Scholar
  22. 22.
    E. G. Kalnins, R. D. Levine, and W. Miller (Jr.), in:Mechanics, Analysis and Geometry: 200 Years After Lagrange, North-Holland, Amsterdam (1991), pp. 237–256.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • A. G. Nikitin
  • S. P. Onufriichuk
  • V. I. Fushchich

There are no affiliations available

Personalised recommendations