Journal of Statistical Physics

, Volume 33, Issue 3, pp 571–594 | Cite as

Medium-dependent dynamics in Fermi systems from a pair-composite viewpoint

  • Abraham Goldberg
  • Robert D. Puff


We examine the effects of medium dependence of the two-body dynamics on the many-body properties of Fermion systems, with approximation ultimately aimed at lower densities for all temperatures. The dynamics are initially treated in terms of a pair-composite formulation given previously, and the underlying single-Fermion nature of the pair constituents allows interpretation via more conventional thermal many-body formalism. This permits construction of coupled equations for composite amplitudes and bound states, single-particle energy and momentum distributions, and macroscopic thermodynamic properties. We explore differences between our results and those of traditional theories which incorporate two-body correlations in some fashion, and we display explicitly how correct limiting results are recovered from our equations when the density and/or coupling strength is decreased. Finally, we provide an interpretation of our results via a form of quasiparticle quantum cluster expansion analogous to the familiar particle quantum cluster expansion.

Key words

Fermi systems pair-composite correlations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Luttinger,Phys. Rev. 121:942 (1961).Google Scholar
  2. 2.
    A. L. Fetter and J. D. Walecka,Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971), Chap. III; or also see C. D. Mahan,Many-Particle Physics (Plenum, New York, 1981), Chap. II.Google Scholar
  3. 3.
    E. Beth and G. E. Uhlenbeck,Physica 4:915 (1937).Google Scholar
  4. 4.
    T. Matsubara,Prog. Theor. Phys. 14:351 (1955).Google Scholar
  5. 5.
    T. Kato, T. Kobayashi, and M. Namiki,Prog. Theor. Phys. Suppl. 15:1960).Google Scholar
  6. 6.
    P. C. Martin and J. Schwinger,Phys. Rev. 115:1342 (1959).Google Scholar
  7. 7.
    A. Goldberg and R. D. Puff,Phys. Rev. A 10:323 (1974).Google Scholar
  8. 8.
    V. M. Galitskii and A. B. Migdal,Sov. Phys. JETP 7:96 (1958); V. M. Galitskii,Sov. Phys. JETP 7,104 (1958); S. T. Beliaev, Sov.Phys. JETP 7:299 (1958).Google Scholar
  9. 9.
    J. G. Dash, D. C. Hickernel, and E. O. McLean,Phys. Rev. A 8:1589 (1973).Google Scholar
  10. 10.
    R. L. Siddon and M. Schick,Phys. Rev. A 9:907 (1974);Phys. Rev. A 9:1753 (1974).Google Scholar
  11. 11.
    M. B. Vetrovec and G. M. Carneiro,Phys. Rev. B 22:1250 (1980).Google Scholar
  12. 12.
    R. F. Bishop, M. R. Strayer, and J. M. Irvine,Phys. Rev. A 10:2423 (1974); R. F. Bishop, H. B. Ghassib, and M. R. Strayer,Phys. Rev. A 13:1570 (1976); see also W. E. Brittin and A. Y. Sakakura,Phys. Rev. A 21:2050 (1980).Google Scholar
  13. 13.
    R. D. Puff,Ann. Phys. (N.Y.) 13:317 (1961).Google Scholar
  14. 14.
    T. Foster,Phys. Rev. 149:784 (1966).Google Scholar
  15. 15.
    G. Baym and L. Kadanoff,Phys. Rev. 124:287 (1961).Google Scholar
  16. 16.
    R. D. Puff, A. S. Reiner, and L. Wilets,Phys. Rev. 149:778:1966).Google Scholar
  17. 17.
    P. Nozieres,The Theory of Interacting Fermi Systems (W. A. Benjamin, New York, 1964), Chap. V.Google Scholar
  18. 18.
    M. Schick and R. D. Puff, unpublished.Google Scholar
  19. 19.
    B. J. Alder, private communication.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • Abraham Goldberg
    • 1
  • Robert D. Puff
    • 2
  1. 1.Lawrence Livermore National LaboratoryUniversity of CaliforniaLivermore
  2. 2.Institute for Nuclear Theory, Physics DepartmentUniversity of WashingtonSeattle

Personalised recommendations