Skip to main content
Log in

Haloacetate analogs of pheromones: Effects on catabolism and electrophysiology inPlutella xylostella

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

A series of mono-, di-, and trihalogenated acetate analogs of Zl 1–16: Ac were prepared and examined for electrophysiological activity in antennae of males of the diamondback moth,Plutella xylostella. In addition, two potential affinity labels, a diazoacetate (Dza) and a trifluoromethyl ketone (Tfp), were evaluated for EAG activity. The Z11–16∶Ac showed the highest activity in EAG assays, followed by the fluorinated acetates, but other halo-acetates were essentially inactive. The polar diazoacetate and the trifluoromethyl ketone were also very weak EAG stimulants. The effects of these analogs on the hydrolysis of [3H]Z11–16∶Ac to [3H]Z11–16∶OH by antennal esterases was also examined. The three fluorinated acetates showed the greatest activity as inhibitors in competition assays, with rank order F2Ac > F3Ac > FAc > Ac > Cl2Ac > ClAc > Dza > Br2Ac > BrAc > Tfp > I > Cl3Ac > Br3Ac > OH. The relative polarities of the haloacetates, as determined by TLC mobility, are in the order mono- > di- > trihalo, but F, Cl, Br, and I all confer similar polarities within a substitution group. Thus, the steric size appears to be the predominant parameter affecting the interactions of the haloacetate analogs with both receptor and catabolic proteins inP. xylostella males.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albans, K.R., Baker, R., Jones, O.T., Justum, A.R., andTurnbull, M.D. 1984. Inhibition of response ofHeliothis virescens to its natural pheromone by antipheromones.Crop Prot. 3:501–506.

    Google Scholar 

  • Baker, R.,Green, A.,Justum, A.R., andTurnbull, M.D. 1981. Protecting plants from insect pests. Eur. Pat. Appl. EP 42,228.

    Google Scholar 

  • Bestmann, H.J. 1986. Synthesis, structure activity relationships and mode of action of insect pheromones, pp. 45–64,in Atta-ur-Rahman (ed.). Natural Products Chemistry. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Bestmann, H.J., andVostrowsky, O. 1982. Structure-activity relationships in insect pheromones. A dynamical model of pheromone interactions with receptor sites, pp. 253–263,in W. Breipohl (ed.). Olfaction and Endocrine Regulation. IRL Press, London.

    Google Scholar 

  • Chisholm, M.D., Steck, W.F., Arthur, A.P., andUnderhill, E.W. 1975. Evidence for cis-11-hexadecen-1-ol acetate as a major component of the sex pheromone of the bertha army worm,Mamestra configurera (Lepidoptera: Noctuidae).Can. Entomol. 107:361–366.

    Google Scholar 

  • Chisholm, M.D., Steck, W.F., Underhill, E.W., andPalaniswamy, P. 1983. Field-trapping of diamondback mothPlutella xylostella using an improved four-component sex attractant blend.J. Chem. Ecol. 9:113–118.

    Google Scholar 

  • Chow, Y.S., Lin, Y.M. andHsu, C.T. 1977. Sex pheromone of the diamondback moth (Lepidoptera: Plutellidae).Bull. Inst. Zool. Acad. Sin. 16:99–105.

    Google Scholar 

  • Corey, E.J., andMyers, A.G. 1984. Efficient synthesis and intramolecular cyclopropanation of unsaturated esters of diazoacetic acid.Tetrahedron Lett. 25:3559–3562.

    Google Scholar 

  • De Kramer, J.J., andHemberger, J. 1987. The neurobiology of pheromone reception, pp. 433–471, in G.D. Prestwich and G.J. Blomquist (eds.). Pheromone Biochemistry. Academic Press, New York.

    Google Scholar 

  • Ding, Y.-S., andPrestwich, G.D. 1986. Metabolic transformation of tritium-labeled pheromone by tissues ofHeliothis virescens moths.J. Chem. Ecol. 12:411–429.

    Google Scholar 

  • Duncan, D.B. 1955. Multiple range and multiple F tests.Biometrics 11:1–41.

    Google Scholar 

  • Ferkovich, S.M. 1981. Enzymatic alteration of insect pheromones, pp. 165–185,in D.M. Norris (ed.). Perception of Behavioral Chemicals. Elsevier/North Holland, Amsterdam.

    Google Scholar 

  • Ferkovich, S.M., Oliver, J., andDillard, C. 1982a. Comparison of pheromone hydrolysis by the antennae with other tissues after adult eclosion in the cabbage looper moth,Trichoplusia ni.Entomol. Exp. Appl. 31:327–328.

    Google Scholar 

  • Ferkovich, S.M., Oliver, J.E., andDillard, C. 1982b. Pheromone hydrolysis by cuticularand interior esterases of the antennae, legs, and wings of the cabbage looper moth,Trichoplusia ni (Hubner).J. Chem. Ecol. 8:859–866.

    Google Scholar 

  • Ganjian, L., Pettei, M.J., Nakanishi, K., andKaissling, K.-E. 1978. A photoaffinity-labelled insect sex pheromone for the mothAntheraea polyphemus.Nature 271:157–158.

    Google Scholar 

  • Hammock, B.D., Wing, K.D., Mclaughlin, J., Lovell, V., andSparks, T.C. 1982. Trifluoromethyl ketones as possible transition state analog inhibitors of juvenile hormone esterase.Pest. Biochem. Physiol. 17:76–88.

    Google Scholar 

  • Henrick, C.A. 1977. The synthesis of insect pheromones.Tetrahedron 33:1845–1889.

    Google Scholar 

  • Kafka, W.A., andNeuwirth, J. 1975. A model of pheromone molecule-acceptor interaction.Z. Naturforsch. 30c:278–282.

    Google Scholar 

  • Kaissling, K.E. 1986. Chemo-electrical transduction in insect olfactory receptors.Annu. Rev. Neurosci. 9:121–145.

    Google Scholar 

  • Klein, U. 1987. Sensillum lymph proteins from antennal olfactory hairs of the mothAntheraea polyphemus (Saturnidae)Insect Biochem. 17:1193–1204.

    Google Scholar 

  • Klein, U., andKeil, T. A. 1984. Dendritic membrane from insect olfactory hairs: Isolation method and electron microscopic observations.Cell. Mol. Neurobiol. 4:385–396.

    Google Scholar 

  • Liljefors, T., Thelin, B., andVander Pers, J.N.C. 1984. Structure-activity relationships between stimulus molecule and response of a pheromone receptor cell in turnip moth,Agrotis segetum: Modifications of the acetate group.J. Chem. Ecol. 10:1661–1675.

    Google Scholar 

  • Lonergan, G. 1986. Metabolism of pheromone components and analogs by cuticular enzymes ofChoristoneura fumiferana.J. Chem. Ecol. 12:483–496.

    Google Scholar 

  • Morse, D., andMeighen, E. 1984. Detection of pheromone biosynthetic and degradative enzymesin vitro.J. Biol. Chem. 259:475–480.

    Google Scholar 

  • Morse, D., andMeighen, E. 1986. Pheromone biosynthesis and the role of functional groups in pheromone specificity.J. Chem. Ecol. 12:335–351.

    Google Scholar 

  • Morse, D., andMeighen, E.A. 1987. Pheromone biosynthesis: Enzymatic studies in Lepidoptera, pp. 121–158,in G. D. Prestwich and G. J. Blomquist (eds.). Pheromone Biochemistry. Academic Press, New York.

    Google Scholar 

  • Neises, B., andSteglich, W. 1978. A simple procedure for preparation of carboxylic esters.Angew. Chem. Int. Ed. Engl. 17:522–523.

    Google Scholar 

  • Prestwich, G.D. 1986. Fluorinated sterols, hormones, and pheromones: Enzyme-targeted disruptants in insects.Pestic. Sci. 37:430–440.

    Google Scholar 

  • Prestwich, G.D. 1987a. Chemical studies of pheromone reception and catabolism, pp. 473–527,in G.D. Prestwich and G.J. Blomquist (eds.). Pheromone Biochemistry. Academic Press, New York.

    Google Scholar 

  • Prestwich, G.D. 1987b. Chemistry of pheromone and hormone metabolism in insects.Science. 237:999–1006.

    Google Scholar 

  • Prestwich, G.D., andBlomquist, G.J. (eds.). 1987. Pheromone Biochemistry. Academic Press, New York, 546 pp.

    Google Scholar 

  • Prestwich, G.D., Golec, F.A., andAndersen, N.H. 1984. Synthesis of a highly tritiated photoaffinity labeled pheromone analog for the mothAntheraea polyphemus.J. Labelled Compd. Radiopharm. 21:593–601.

    Google Scholar 

  • Prestwich, G.D., Carvalho, J.F., Ding, Y.-S., andHendricks, D.E. 1986a. Acyl fluorides as reactive mimics of aldehyde pheromones: Hyperactivation and aphrodisia inHeliothis virescens.Experientia 42:964–966.

    Google Scholar 

  • Prestwich, G.D., Vogt, R.G., andRiddiford, L.M. 1986b. Binding and hydrolysis of radiolabeled pheromone and several analogs by male-specific antennal proteins of the mothAntheraea polyphemus.J. Chem. Ecol. 12:323–333.

    Google Scholar 

  • Prestwich, G.D., Vogt, R.G., andDing, Y.-S. 1987. Chemical studies of pheromone catabolism and reception, pp. 57–66,in J. Law (ed.). Molecular Entomology. UCLA Symposia on Molecular and Cellular Biology, New Series. Alan R. Liss, New York.

    Google Scholar 

  • Priesner, E. 1979. Specificity studies on pheromone receptors of noctuid and tortricid Lepidoptera, pp. 57–71,in F.J. Ritter (ed.). Chemical Ecology: Odour Communication in Animals. Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Roelofs, W.L. 1984. Electroantennogram asssays: Rapid and convenient screening procedures for pheromones, pp. 131–160,in H.E. Hummel and T.A. Miller (eds.). Techniques in Pheromone Research. Springer-Verlag, New York.

    Google Scholar 

  • Shaw, D.A., andTuominen, T.C. 1985. An efficient synthesis of 3-hydroxy-3-trifluoromethyl phthalide.Synth. Commun. 15:1291–1297.

    Google Scholar 

  • Steck, W., Underbill, E.W., andChisholm, M.D. 1982. Structure-activity relationships in sex attractants for North American noctuid moths.J. Chem. Ecol. 8:731–754.

    Google Scholar 

  • Tamaki, Y. (1985) Sex pheromones, pp. 145–191,in G.A. Kerkut and L.I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry, and Pharmacology, vol. 11. Pergamon, New York.

    Google Scholar 

  • Tamaki, Y., Kawasai, K., Yamada, H., Kashihara, T., Osaki, N., Ando, T., Yashida, S., andKakinohama, H. 1977. (Z)-11-Hexadecenal and (Z)-11-hexadecenyl acetate: Sex pheromone of the diamondback moth (Lepidoptera: Plutellidae).Appl. Entomol. Zool. 12:208–210.

    Google Scholar 

  • Vinczer, P., Baan, G., Novak, L., andSzantay, C. 1984. A novel stereocontrolled synthesis of (Z, Z)-3, 13-octadecadien-1-yl acetate, the sex pheromone ofSynthedon species.Tetrahedron Lett. 25:2701–2704.

    Google Scholar 

  • Vogt, R.G. 1987. The molecular basis of pheromone reception: Its role in behavior, pp. 385–431,in G.D. Prestwich and G.J. Blomquist (eds.). Pheromone Biochemistry. Academic Press, New York.

    Google Scholar 

  • Vogt, R.G., andRiddiford, L.M. 1981. Pheromone binding and inactivation by moth antennae.Nature 293:161–163.

    Google Scholar 

  • Vogt, R.G., andRiddiford, L.M. 1986a. Scale esterase: A pheromone-degrading enzyme from the scales of the silk mothAntheraea polyphemus.J. Chetn. Ecol. 12:469–482.

    Google Scholar 

  • Vogt, R.G., andRiddiford, L.M. 1986b. Pheromone reception: A kinetic equilibrium, pp. 201–205,in T. Payne, R. Cardé, and J. Boeckh (eds.). Mechanisms of Perception and Orientation to Insect Olfactory Signals. Oxford University Press, Oxford.

    Google Scholar 

  • Vogt, R.G., Riddiford, L.M., andPrestwich, G.D. 1985. Kinetic properties of a pheromone degrading enzyme: The sensillar esterase ofAntheraea polyphemus.Proc. Natl. Acad. Sci. U.S.A. 82:8827–8831.

    Google Scholar 

  • Vogt, R.G.,Prestwich, G.D., andRiddiford, L.M. 1988. Sex pheromone receptor proteins: Visualization using a radiolabeled photoaffinity analog.J. Biol. Chem. in press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Institute of Organic Chemistry, Czechoslovak Academy of Science, Flemingovo naměstí 2, 16610, Prague, Czechoslovakia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prestwich, G.D., Streinz, L. Haloacetate analogs of pheromones: Effects on catabolism and electrophysiology inPlutella xylostella . J Chem Ecol 14, 1003–1021 (1988). https://doi.org/10.1007/BF01018789

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01018789

Key words

Navigation