Theoretical and Mathematical Physics

, Volume 57, Issue 3, pp 1209–1216 | Cite as

Symmetries of scalar fields. II

  • A. G. Meshkov
Article

Keywords

Scalar Field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. G. Meshkov, Teor. Mat. Fiz.,55, 197 (1983).Google Scholar
  2. 2.
    M. K. Volkov and V. N. Pervushin, Essentially Nonlinear Quantum Theories, Dynamical Symmetries, and Meson Physics [in Russian], Atomizdat, Moscow (1978).Google Scholar
  3. 3.
    S. V. Manakov and V. E. Zakharov, Lett. Math. Phys.,5, 247 (1981).Google Scholar
  4. 4.
    N. Kh. Ibragimov, Dokl. Akad. Nauk SSSR,230, 26 (1976).Google Scholar
  5. 5.
    A. Fujmoto and Y. Watanabe, Math. Jpn.,26, 203 (1981).Google Scholar
  6. 6.
    H. H. Jonson, Proc. Am. Math. Soc.,15, 432, 675 (1964).Google Scholar
  7. 7.
    V. N. Shapovalov, Izv. Vyssh. Uchebn. Zaved. Fiz., No. 6, 57 (1977).Google Scholar
  8. 8.
    O. V. Kaptsov, Dokl. Akad. Nauk SSSR,262, 1056 (1982).Google Scholar
  9. 9.
    A. V. Zhiber and A. B. Shabat, Dokl. Akad. Nauk SSSR,247, 1103 (1979).Google Scholar
  10. 10.
    A. V. Zhiber, N. Kh. Ibragimov, and A. B. Shabat, Dokl. Akad. Nauk SSSR,249, 26 (1979).Google Scholar
  11. 11.
    A. N. Leznov, V. G. Smirnov, and A. B. Shabat, Teor. Mat. Fiz.,51, 10 (1982).Google Scholar
  12. 12.
    N. Kh. Ibragimov and A. B. Shabat, Dokl. Akad. Nauk SSSR,244, 57 (1979).Google Scholar
  13. 13.
    N. Kh. Ibragimov and A. B. Shabat, Funktsional. Analiz i Ego Prilozhen.,14, 25 (1980).Google Scholar
  14. 14.
    N. Kh. Ibragimov and A. B. Shabat, Funktsional. Analiz i Ego Prilozhen.,14, 79 (1980).Google Scholar
  15. 15.
    A. V. Zhiber, Dinamika Sploshnoi Sredy (Novosibirsk: In-t Gidrodinamiki), No. 44, 3 (1980).Google Scholar
  16. 16.
    S. I. Svinolunov and V. V. Sokolov, “Evolution equations of second order possessing symmetries,” Paper No. 3927-82 Deposited at VINITI (1982).Google Scholar
  17. 17.
    V. Rosenhaus and K. Kuranen, Izv. Akad. Nauk ÉSSR, Fiz.-Mat.,31, 304 (1982).Google Scholar
  18. 18.
    A. G. Meshkov, “Algebras of Lie-Bäcklund equations of the formu oo=H(x, u, u v,u oi,u ij) in higher dimensions,” Paper No. 2136-81 Deposited at VINITI (1981).Google Scholar
  19. 19.
    P. A. Shirokov, Izv. Akad. Nauk Kaz. SSR, Ser. Fiz.-Mat., Ser. 2,25, 86 (1925); Selected Works on Geometry [in Russian], Izd. Kazansk. Un., Kazan' (1966), pp. 256–280.Google Scholar
  20. 20.
    G. I. Kruchkovich, Dokl. Akad. Nauk SSSR,115, 862 (1957).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • A. G. Meshkov

There are no affiliations available

Personalised recommendations