Theoretical and Mathematical Physics

, Volume 92, Issue 1, pp 802–804 | Cite as

Density functional taking into account nuclear thermal motion of compressed matter

  • E. A. Dynin


Bogolyubov's inequality is used to generalize the density functional method to take into account nuclear thermal motion. The results apply to a two-component system in which the nuclei satisfy classical statistics. Applications to a cell model describing dense heated states of matter are considered.


Cell Model Classical Statistic Thermal Motion Heated State Functional Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. D. Mermin,Phys. Rev.,137, No. 5A, 1441 (1965).Google Scholar
  2. 2.
    V. Gupta and A. K. Rajagopal,Phys. Rep.,87, 259 (1982).Google Scholar
  3. 3.
    B. K. Godwal, S. K. Sikka, and B. Chidambaran,Phys. Rep.,102, 121 (1983).Google Scholar
  4. 4.
    F. Perrot, Y. Furutani, and M. W. Dharma-Wardana,Phys. Rev. A,41, 1096 (1990).Google Scholar
  5. 5.
    S. V. Tyablikov,Methods of Quantum Theory of Magnetism, Plenum Press, New York (1967).Google Scholar
  6. 6.
    N. W. Ashkroft and D. Stroud, “Theory of the thermodynamics of simple liquid metals,” in:Solid State Physics, Vol. 38, Academic Press, New York (1978), p. 2.Google Scholar
  7. 7.
    V. A. Simonenko and G. V. Sin'ko,Teplofiz. Vys. Temp.,26, 864 (1988).Google Scholar
  8. 8.
    R. B. Lauglin,Phys. Rev. A,33, 510 (1986).Google Scholar
  9. 9.
    E. H. Lieb,Rev. Mod. Phys.,48, 553 (1976).Google Scholar
  10. 10.
    M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover (1964).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • E. A. Dynin

There are no affiliations available

Personalised recommendations