Theoretical and Mathematical Physics

, Volume 42, Issue 3, pp 251–257 | Cite as

Description of Gibbs random fields by the generating functional method

  • G. I. Nazin


Random Field Functional Method Gibbs Random Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    R. A. Minlos, Funktsional. Analiz i Ego Prilozhen.,1, 60 (1967).Google Scholar
  2. 2.
    R. L. Dobrushin, Funktsional. Analiz i Ego Prilozhen.,2, 31 (1968).Google Scholar
  3. 3.
    O. E. Lanford and D. Ruelle, Commun. Math. Phys.,13, 194 (1969).Google Scholar
  4. 4.
    D. Ruelle Commun. Math. Phys.,13, 127 (1970).Google Scholar
  5. 5.
    N. N. Bogolyubov. “Problems of a dynamical theory in statistical physics,” in: Studies in Statistical Mechanics, Vol. 1 (eds. J. de Boer and G. E. Uhlenbeck) North-Holland, Amsterdam (1962).Google Scholar
  6. 6.
    G. I. Nazin, Teor. Mat. Fiz.,42, 243 (1980).Google Scholar
  7. 7.
    D. Ruelle, Statistical Mechanics, New York (1969).Google Scholar
  8. 8.
    G. I. Nazin, in: Problems of Statistical Physics [in Russian], Tyumen' (1976).Google Scholar
  9. 9.
    A. Lenard, Commun. Math. Phys.,30, 35 (1973).Google Scholar
  10. 10.
    A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis [in Russian], Nauka (1976).Google Scholar
  11. 11.
    M. B. Averentsev, Interacting Markov Processes in Biology [in Russian], Pushchino (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • G. I. Nazin

There are no affiliations available

Personalised recommendations