Skip to main content
Log in

Quantum dissipative systems. I. Canonical quantization and quantum Liouville equation

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Sedov's variational principle, which is a generalization of the principle of least action to dissipative processes, is used to generalize canonical quantization and the von Neumann equations to dissipative systems. The example of a harmonic oscillator with friction is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Lanczos,The Variational Principles of Mechanics, Toronto University Press (1949).

  2. H. Goldstein,Classical Mechanics, Addison-Wesley (1950).

  3. L. I. Sedov, “Applied mechanics”, in:Proc. of the 11th Intern. Congr. Appl. Mech., Munich, 1964, Springer-Verlag (1966), p. 9.

  4. L. I. Sedov,Usp. Mat. Nauk,20, 121 (1965).

    Google Scholar 

  5. L. I. Sedov, “Irreversible aspects of continuum mechanics and transfer of physical characteristics of moving fluids”, in:Proc. IUTAM Symp., Vienna 1966, Springer-Verlag (1968), p. 346.

  6. L. I. Sedov,Z. Angew. Math. Phys.,20, 643 (1969).

    Google Scholar 

  7. L. I. Sedov,Prikl. Mat. Mekh.,32, 771 (1968).

    Google Scholar 

  8. L. I. Sedov and A. G. Tsypkin,Principles of the Macroscopic Theory of Gravitation and Electromagnetism [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  9. H. Poincaré,Acta Math.,13, 67 (1890);Rev. Metaphys. Morale,1, 534 (1893).

    Google Scholar 

  10. E. Zermelo,Ann. Phys. (N.Y.),57, 485 (1896).

    Google Scholar 

  11. B. Misra,Proc. Nat. Acad. Sci. USA.,75, 1629 (1978).

    Google Scholar 

  12. I. Prigogine,From Being to Becoming, W. H. Freeman & Co., San Franscico (1980).

    Google Scholar 

  13. N. N. Bogolyubov, “Problems of a dynamical theory in statistical physics”, in:Studies in Statistical Mechanics, Vol. 1 (eds. J. de Boer and G. E. Uhlenbeck), North-Holland, Amsterdam (1962).

    Google Scholar 

  14. N. N. Bogolyubov,Zh. Eksp. Teor. Fiz.,16, 691 (1946).

    Google Scholar 

  15. R. L. Liboff,Introduction to the Theory of Kinetic Equations, New York (1969).

  16. R. Balescu,Equilibrium and Nonequilibrium Statistical Mechanics, Wiley-Interscience, New York (1975).

    Google Scholar 

  17. P. A. M. Dirac,Lectures on Quantum Mechanics, Belfer Graduate School of Science Monographs Series No. 2, Yeshiva University, New York (1964).

    Google Scholar 

  18. P. A. M. Dirac,The Principles of Quantum Mechanics, Oxford (1958).

  19. E. P. Wigner,Symmetries and Reflections, Scientific Essays, MIT Press (1970).

  20. J. von Neumann,Mathematical Foundations of Quantum Mechanics, Princeton (1955).

  21. R. Penrose,The General Theory of Relativity [Russian translation], Mir, Moscow (1983), p. 233.

    Google Scholar 

  22. S. Hawking,Black Holes [Russian translation], Mir, Moscow (1978), p. 169.

    Google Scholar 

  23. S. W. Hawking,Commun. Math. Phys.,87, 395 (1982).

    Google Scholar 

  24. S. Hawking,The General Theory of Relativity [Russian translation] Mir, Moscow (1983), p. 363.

    Google Scholar 

  25. N. D. Birrell and P. C. W. Davies,Quantum Fields in Curved Space, Cambridge University Press, Cambridge (1982).

    Google Scholar 

  26. J. Ellis, J. S. Hagelin, D. V. Nanopoulos, and M. Srednicki,Nucl. Phys.,B241, 381 (1984).

    Google Scholar 

  27. R. E. A. C. Paley and N. Weiner,Fourier Transforms in the Complex Domain, AMS, New York (1934).

    Google Scholar 

  28. M. Namiki and N. Mugibayashi,Prog. Theor. Phys.,10, 474 (1953).

    Google Scholar 

  29. R. W. Hasse,J. Math. Phys.,16, 2005 (1975).

    Google Scholar 

  30. C. G. Callan and Thorlacius,Nucl. Phys.,B329, 117 (1990).

    Google Scholar 

  31. H. Bateman,Phys. Rev.,38, 815 (1931).

    Google Scholar 

  32. E. Kanai,Prog. Theor. Phys.,3, 440 (1948).

    Google Scholar 

  33. W. H. Brittin,Phys. Rev.,77, 396 (1950).

    Google Scholar 

  34. N. A. Lemos,Phys. Rev., D24, 2338 (1981).

    Google Scholar 

  35. H. V. Helmholtz,Borchardt-Crelle J. Mathem.,100, 137, 213 (1886);Wiss. Abh. von H. V. Helmholtz, Vol. 3, Leipzig (1895), p. 203.

    Google Scholar 

  36. The Variational Principles of Mechanics [in Russian], Nauka, Moscow (1959).

  37. P. Havas,Bull. Am. Phys. Soc.,1, 337 (1956).

    Google Scholar 

  38. P. Havas,Nuovo Cimento. Ser. 10. Suppl.,5, 363 (1957).

    Google Scholar 

  39. I. K. Edwards,Am. J. Phys.,47, 153 (1979).

    Google Scholar 

  40. S. A. Hojman and L. C. Shepley,J. Math. Phys.,31, 142 (1991).

    Google Scholar 

  41. G. Lindblad,Commun. Math. Phys.,48, 119 (1976).

    Google Scholar 

  42. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan,J. Math. Phys.,17, 821 (1976).

    Google Scholar 

  43. V. Gorini, A. Frigerio, M. Verri, Kossakowski, and E. C. G. Sudarshan,Rep. Math. Phys.,13 149 (1978).

    Google Scholar 

  44. O. Bratteli,Lecture Notes in Mathematics, Vol. 1055, Springer-Verlag (1984), p. 46.

  45. O. Bratteli and D. W. Robinson,Operator Algebras and Quantum Statistical Mechanics, Vols. 1 and 2, New York (1979, 1981).

  46. J. Messer and B. Baumgartner,Z. Phys., B32, 103 (1978).

    Google Scholar 

  47. G. P. Beretta, E. P. Gyftopoulos, J. L. Park, and G. N. Hatsopoulos,Nuovo Cimento,B 82, 169 (1984).

    Google Scholar 

  48. G. P. Beretta, E. P. Gyftpopoulos, and J. L. Park,Nuovo Cimento B87, 77 (1985).

    Google Scholar 

  49. H. J. Korsch and H. Steffen,J. Phys., A20, 3787 (1987).

    Google Scholar 

  50. M. Hensel and H. J. Korsch,J. Phys., A,25, 2043 (1992).

    Google Scholar 

  51. N. Gisin,J. Phys., A14, 2259 (1981);A 19, 205 (1983);J. Math. Phys.,24, 17779 (1983).

    Google Scholar 

  52. M. P. Kostin,J. Chem. Phys.,57, 3589 (1972);J. Stat. Phys.,12, 145 (1975).

    Google Scholar 

  53. D. Schuch, K. M. Chung, and H. Hartman,24, 1652 (1983).

  54. J. Liouville,J. Math. Pure. Appl.,3, 342 (1838).

    Google Scholar 

  55. V. I. Arnol'd,Ordinary Differential Equations, 3rd ed. [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  56. J. Fronteau,Hadronic J.,2, 724 (1979).

    Google Scholar 

  57. V. H. Steeb,Physica,A95, 181 (1979).

    Google Scholar 

  58. R. M. Santilli,Hadronic J.,1, 223, 574, 1279 (1978);2, 1460 (1979);3, 854 (1980).

    Google Scholar 

  59. R. Mignani, H. C. Myung, and R. M. Santilli,Hadronic J.,6, 1873 (1983).

    Google Scholar 

  60. R. M. Santilli,Lie-Admissible Approach to the Hadronic Structure, Vol. 2, Nonautum: Hadronic Press (1982).

    Google Scholar 

  61. R. M. Santilli,Foundations of Theoretical Mechanics, Vol. 2, Springer-Verlag (1983).

  62. S. Okubo, in:Proc. of the Third Workshop on Current Problems in High Energy Particle Theory. Florence, Italy, Johns Hopkins University Press, Baltimore (1979), p. 103.

    Google Scholar 

  63. R. Mignani,Hadronic J.,12, 167 (1989).

    Google Scholar 

  64. L. I. Sedov and A. G. Tsypkin,Prikl. Mat. Mekh.,43, 387 (1979).

    Google Scholar 

  65. V. L. Berdichevskii,Prikl. Mat. Mekh.,30, No. 3, 510 (1966);30, No. 6, 1081 (1966);43, No. 4, 664 (1979).

    Google Scholar 

  66. V. A. Zhelnorovich,Dokl. Akad. Nauk SSSR,176, 283 (1967);184, 55 (1969).

    Google Scholar 

  67. L. I. Sedov and V. A. Zhelnorovich,Prikl. Mat. Mekh.,42, 771 (1978).

    Google Scholar 

  68. L. T. Chernyi,Models of Continuous Media [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  69. M. Planck,Acht Vorlesungen über theoretische Physik, gehalten an der Columbia University in the City of New York in Frühjahr 1909, Leipzig (1910).

  70. W. Pauli,Theory of Relativity, Pergamon Press, Oxford (1958).

    Google Scholar 

  71. V. E. Tarasov, “Dissipative quantum dynamics and nonlinear sigma-model”, Preprint of Nucl. Phys., 92-33/282, Institute of Moscow State University, Moscow (1992), p. 1.

    Google Scholar 

  72. D. Friedan,Phys. Rev. Lett.,45, 1057 (1980);Ann. Phys. (N.Y.),163, 318 (1985).

    Google Scholar 

  73. L. Alvarez-Gaume, D. Z. Freedman and S. Mukhi,Ann. Phys. (N. Y.),134, 85 (1981).

    Google Scholar 

  74. S. P. De Alwis,Phys. Rev., D34, 3760 (1986).

    Google Scholar 

  75. G. M. Shore,Nucl. Phys. B, 286, 346 (1987).

    Google Scholar 

  76. M. B. Green, J. H. Schwarz, and E. Witten,Superstring Theory, Cambridge University Press, Cambridge (1987).

    Google Scholar 

  77. V. E. Tarasov, in:Proc. of the Seventh Intern. Workshop on High Energy Physics and Quantum Field Theory, 7–14 October, Sochi (1992);Yad. Fiz.,56, 269 (1993).

  78. V. V. Belokurov and V. E. Tarasov,Teor. Mat. Fiz.,78, 471 (1989).

    Google Scholar 

  79. V. V. Belokurov and V. E. Tarasov, Preprint IC-90-168, ICTP, Trieste (1990), p. 1.

  80. N. N. Bogolyubov and D. V. Shirkov,Introduction to the Theory of Quantized Fields, 3rd ed., Wiley, New York (1980).

    Google Scholar 

  81. D. N. Zubarev,Nonequilibrium Statistical Thermodynamics, Consultants Bureau, New York (1974).

    Google Scholar 

  82. L. D. Faddeev and A. A. Slavnov,Gauge Fields, Introduction to Quantum Theory, transl. of 1st Russ. ed., Benjamin/Cummings, Reading, Mass. (1980).

    Google Scholar 

  83. N. D. Birrell and P. C. W. Davies,Quantum Fields in Curved Space, Cambridge University Press, Cambridge (1982).

    Google Scholar 

  84. G. A. Vilkovisky,Nucl. Phys.,B234, 125 (1984).

    Google Scholar 

  85. B. S. DeWitt,Dynamical Theory of Groups and Fields Gordon and Breach, New York (1965).

    Google Scholar 

  86. P. S. Howe, G. Papadopoulos, and K. S. Stelle,Nucl. Phys.,B296, 26 (1988).

    Google Scholar 

  87. J. Honerkamp,Nucl. Phys.,B36, 130 (1972).

    Google Scholar 

  88. G. D. Birkhoff,Relativity and Modern Physics, Horvard University Press, Cambridge (1923).

    Google Scholar 

  89. L. P. Eisenhart,Riemannian Geometry, Princeton University Press, Princeton (1965).

    Google Scholar 

  90. O. Veblen,Proc. Natl. Acad. Sci. USA,8, 192 (1922).

    Google Scholar 

  91. O. Veblen, and T. Y. Thomas,Trans. Am. Math. Soc.,25, 551 (1923);26, 373 (1923).

    Google Scholar 

  92. V. Hlavaty,Ann. Soc. Pol.,5, 44 (1926);Mem. Sci. Mathem. Paris,63, 1 (1934).

    Google Scholar 

  93. O. Veblen,Invariants of Quadratic Differential Forms, London (1927).

  94. T. Y. Thomas,Differential Invariants of the Generalized Spaces, Cambridge (1934).

Download references

Authors

Additional information

Institute of Nuclear Physics, State University, Moscow. Translated from Teoreticheskaya i Matematicheskaya Fizika Vol. 100, No. 3, pp. 402–417, September, 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarasov, V.E. Quantum dissipative systems. I. Canonical quantization and quantum Liouville equation. Theor Math Phys 100, 1100–1112 (1994). https://doi.org/10.1007/BF01018575

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01018575

Keywords

Navigation