Journal of Statistical Physics

, Volume 34, Issue 3–4, pp 615–646 | Cite as

Order and disorder lines in systems with competing interactions. III. Exact results from stochastic crystal growth

  • P. Ruján
Articles

Abstract

The methods presented in the first two articles of this series are simplified and generalized by growing stationary stochastic crystals from a given Ansatz layer. On the disorder trajectory the free energy, correlation functions, and multicritical points are calculated explicitly for a large class of models with competing interactions, including the staggered eight-vertex model, the general sixteen-vertex model, theq-state Potts model on a triangular lattice, a generalZ(q) model, and restricted spin glass models in two dimensions.

Key words

Disorder lines exact results q-state spin models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Ruján,J. Stat. Phys. 29:231 (1982).Google Scholar
  2. 2.
    I. Peschel and V. J. Emery,Z. Phys. B 43:241 (1981).Google Scholar
  3. 3.
    P. Ruján,J. Stat. Phys. 29:247 (1982).Google Scholar
  4. 4.
    D. Dhar,Phys. Rev. Lett. 49:959 (1982);Phys. Rev. Lett. 51:853 (1983).Google Scholar
  5. 5.
    I. G. Enting,J. Phys. C 10:1379, 1023 (1977);11:555, 2001 (1978).Google Scholar
  6. 6.
    A. M. Verhagen,J. Stat. Phys. 15:219 (1976).Google Scholar
  7. 7.
    T. R. Welberry and R. Galbraith,J. Appl. Crystallogr. 6:87 (1973);8:636 (1975).Google Scholar
  8. 8.
    B. M. McCoy and T. T. Wu,Phys. Rev. 176:631 (1968).Google Scholar
  9. 9.
    Yu. G. Stroganov,Phys. Lett. A 74:116 (1979); R. J. Baxter,J. Stat. Phys. 28:1 (1982).Google Scholar
  10. 10.
    K. Binder, inPhase Transitions and Critical Phenomena, Vol. V, C. Domb and M. S. Green, eds. (Academic Press, New York, 1976).Google Scholar
  11. 11.
    O. Perron,Math. Ann. 64:248 (1907); S. B. Frobenius,Pressus. Acad. Wiss. 471 (1908).Google Scholar
  12. 12.
    J. Dóczi-Réger and P. C. Hemmer,Physica A 108, 531 (1981).Google Scholar
  13. 13.
    G. H. Wannier,Rev. Mod. Phys. 17:50 (1945); I. Syozi inPhase Transitions and Critical Phenomena, Vol. I, C. Domb and M. S. Green, eds. (Academic Press, New York, 1972).Google Scholar
  14. 14.
    J. Stephenson,Phys. Rev. B 1:4405 (1970);J. Math. Phys. 5:1009 (1964);7:1123 (1966);11:413, 420 (1970).Google Scholar
  15. 15.
    R. J. Baxter,Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1982).Google Scholar
  16. 16.
    I. Peschel and F. Rys,Phys. Lett. A 91:187 (1982).Google Scholar
  17. 17.
    V. G. Vaks, A. I. Larkin, and Yu. N. Ovchinikov,Zh. Eksp. Teor. Fiz. 49:1180 (1965) [Sov. Phys. JETP 22:820 (1966)] and Ref. 14.Google Scholar
  18. 18.
    R. J. Elliott,Phys. Rev. 124:346 (1961); W. Selke,Z. Phys. B 29:133 (1978); M. E. Fisher and W. Selke,Phys. Rev. Lett. 44:1502 (1980);Phys. Rev. B 20:257 (1979); P. Bak and F. van Boehm,Ibid. 21:5297 (1980); S. Redner and H. E. Stanley,Ibid. 16:4901 (1977).Google Scholar
  19. 19.
    P. Ruján,Phys. Rev. B 24:6620 (1981).Google Scholar
  20. 20.
    J. Ashkin and E. Teller,Phys. Rev. 64:178 (1943).Google Scholar
  21. 21.
    F. J. Wegner,J. Phys. C 5:L131 (1972); F. Y. Wu,J. Math. Phys. 18:611 (1977).Google Scholar
  22. 22.
    For a review see E. H. Lieb and F. Y. Wu, inPhase Transitions and Critical Phenomena, Vol. I, C. Domb and M. S. Green, eds. (Academic Press, New York, 1972).Google Scholar
  23. 23.
    R. B. Potts,Proc. Camb. Phil. Soc. 48:106 (1952).Google Scholar
  24. 24.
    For a review and further references see F. Y. Wu,Rev. Mod. Phys. 54:235 (1982).Google Scholar
  25. 25.
    W. F. Wolff and J. Zittartz,Z. Phys. B 50:131 (1983) and references therein.Google Scholar
  26. 26.
    A. N. Berker and L. P. Kadanoff,J. Phys. A 13:L259 (1980).Google Scholar
  27. 27.
    D. A. Huse,Phys. Rev. B 24:5180 (1981).Google Scholar
  28. 28.
    S. Ostlund,Phys. Rev. B 24:398 (1981).Google Scholar
  29. 29.
    S. Elitzur, R. B. Pearson, and J. Shigemitsu,Phys. Rev. D 19:3698 (1979).Google Scholar
  30. 30.
    G. Toulouse,Commun. Phys. 2:115 (1977).Google Scholar
  31. 31.
    C. Fan and B. M. McCoy,Phys. Rev. 182:614 (1969).Google Scholar
  32. 32.
    F. Haldane, P. Bak, and T. Bohr,Phys. Rev. B 28:2743 (1983); H. J. Schulz,Phys. Rev. B 28:2746 (1983).Google Scholar
  33. 33.
    W. Selke and M. E. Fisher,Z. Phys. B 40:71 (1980); W. Selke,Ibid. 43:335 (1981); I. Morgenstern,Phys. Rev. B 26:5296 (1982).Google Scholar
  34. 34.
    For a review see K. Binder, inOrdering in Strongly Fluctuating Condensed Matter Systems, T. Riste, ed. (Plenum, New York, 1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • P. Ruján
    • 1
  1. 1.Institute for Theoretical PhysicsEötvös UniversityBudapestHungary

Personalised recommendations