Journal of Statistical Physics

, Volume 34, Issue 3–4, pp 539–556 | Cite as

Some remarks on nonequilibrium dynamics of infinite particle systems

  • J. Fritz


Classical mechanics of infinitely many particles in dimensions one and two is considered, particles interacting by a superstable pair potential of finite range. The group of motion generated by Newton's equations is constructed in the space of locally finite configurations with a logarithmic order of energy fluctuations at infinity. A core of the Liouville operator is also described. Results of Dobrushin and the author and of Marchioro-Pellegrinotti-Pulvirenti are improved.

Key words

Infinite systems superstable interactions Liouville operator essential self-adjointness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Calderoni and S. Caprino, Time evolution of infinitely many particles. An existence theorem,J. Stat. Phys. 28:815–833 (1982).Google Scholar
  2. 2.
    R. L. Dobrushin and J. Fritz, Non-equilibrium dynamics of one-dimensional infinite particle systems with a hard-core interaction,Commun. Math. Phys. 55:275–292 (1977).Google Scholar
  3. 3.
    J. Fritz and R. L. Dobrushin, Non-equilibrium dynamics of two-dimensional infinite particle systems with a singular interaction,Commun. Math. Phys. 57:67–81 (1977).Google Scholar
  4. 4.
    J. Fritz, Infinite lattice systems of interacting diffusion processes. Existence and regularity properties.Z. Wahrscheinlichkeitstheorie verw. Geb. 59:291–309 (1982).Google Scholar
  5. 5.
    J. Fritz, Local stability and hydrodynamical limit of Spitzer's one-dimensional lattice model,Commun. Math. Phys. 86:363–373 (1982).Google Scholar
  6. 6.
    O. E. Lanford, III, The classical mechanics of one-dimensional systems of infinitely many particles,Commun. Math. Phys. 9:169–191 (1968).Google Scholar
  7. 7.
    O. E. Lanford, III, Time evolution of large classical systems, inDynamical Systems, Theory and Applications (Lecture Notes in Physics No. 38, Springer, Berlin, 1975), pp. 1–111.Google Scholar
  8. 8.
    O. E. Lanford, III, Time dependent phenomena in statistical mechanics, inMathematical Problems in Theoretical Physics, Proceedings, Lausanne 1979 (Lecture Notes in Physics, No. 116, Springer, Berlin, 1980), pp. 103–118.Google Scholar
  9. 9.
    O. E. Lanford, III, J. L. Lebowitz, and E. H. Lieb, Time evolution of infinite anharmonic systems,J. Stat. Phys. 16:453–461 (1977).Google Scholar
  10. 10.
    C. Marchioro, A. Pellegrinotti, and M. Pulvirenti, Essential self-adjointness of the Liouville operator for infinite classical systems,Commun. Math. Phys. 58:113 (1978).Google Scholar
  11. 11.
    C. Marchioro, A. Pellegrinotti, M. Pulvirenti, and Yu. Suhov, Time evolution of Gibbs states for an anharmonic lattice,Commun. Math. Phys. 66:131–146 (1979).Google Scholar
  12. 12.
    C. Marchioro, A. Pellegrinotti, and M. Pulvirenti, Remarks on the existence of non-equilibrium dynamics, inRandom Fields. Proceedings, Esztergom 1979, Vol. II (North-Holland, Amsterdam, 1981), pp. 733–746.Google Scholar
  13. 13.
    C. Marchioro, A. Pellegrinotti, and M. Pulvirenti, On the dynamics of infinite anharmonic systems,J. Math. Phys. 22:1740–1746 (1981).Google Scholar
  14. 14.
    M. Pulvirenti, On the time evolution of infinitely extended particle systems,J. Stat. Phys. 27:693–709 (1982).Google Scholar
  15. 15.
    M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. II (Academic Press, New York, 1975).Google Scholar
  16. 16.
    D. Ruelle,Statistical Mechanics. Rigorous Results (Benjamin, New York, 1969).Google Scholar
  17. 17.
    D. Ruelle, Superstable interactions in classical statistical mechanics,Commun. Math. Phys. 18:127–159(1970).Google Scholar
  18. 18.
    H. Yaguchi, Construction of one-dimensional classical dynamical system of infinitely many particles with nearest neighbor interaction,Hiroshima Math. J. 11:255–273 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • J. Fritz
    • 1
  1. 1.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance

Personalised recommendations