Literature Cited
R. L. Dobrushin and S. B. Shlosman, “Constructive criterion for the uniqueness of Gibbs field,” in: Statistical Mechanics and Dynamical Systems, Birkhouser, New York (1985).
R. L. Dobrushin and S. B. Shlosman, “Completely analytical Gibbs fields,” in: Statistical Mechanics and Dynamical Systems, Birkhouser, New York (1985).
R. L. Dobrushin and E. A. Pechersky, in: Random Fields, Vol. 1, North-Holland (1981); pp. 223–262.
Ch. J. Preston, “Random fields,” Lect. Notes in Math.,534 (1976).
R. L. Dobrushin, Funktsional. Analiz i Ego Prilozhen.,2, 31 (1968).
J. Glimm, A. Jaffe, and T. Spencer, Commun. Math. Phys.,45, 203 (1975).
J. Fröhlich and E. Lieb, Commun. Math. Phys.,60, 233 (1978).
J. Fröhlich, R. Israel, E. Lieb, and B. Simon, Commun. Math. Phys.,62, 1 (1978).
J. Fröhlich, R. Israel, E. Lieb, and B. J. Simon, Stat. Phys.,22, 297 (1980)
R. L. Dobrushin and S. B. Shlosman, Sel. Math. Sov.,1, 317 (1981).
Ya. G. Sinai, Theory of Phase Transitions [in Russian], Nauka, Moscow (1980).
R. L. Dobrushin and S. B. Shlosman, “Problem of the stability of ground states,” Preprint [in Russian], Institute of Information Transmission Problems, USSR Academy of Sciences, Moscow (1984).
V. A. Malyshev, “Perturbation of Gibbs random fields,” in: Multicomponent Random Systems [in Russian], Nauka, Moscow (1978).
V. A. Malyshev, R. A. Minlos, E. A. Petrova, and Yu. A. Terletskii, “Generalized contour models,” in: Reviews of Science, Ser. Probability Theory and Mathematical Statistics, Vol. 19 [in Russian], VINITI, Moscow (1982).
S. B. Shlosman and E. A. Pecherskii, Abstracts of Papers at 6th International Symposium on Information Theory, Tashkent, 1984, Part 3 [in Russian], Fan, Tashkent (1984), pp. 270–272.
R. Kotecky and S. B. Shlosman, Commun. Math. Phys.,83, 493 (1982).
Additional information
All-Union Scientific-Research Institute of the Organization, Control, and Economics of the Oil and Gas Industry. Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 66, No. 3, pp. 430–444, March, 1986.
Rights and permissions
About this article
Cite this article
Shlosman, S.B. Uniqueness and half-space nonuniqueness of gibbs states in Czech models. Theor Math Phys 66, 284–293 (1986). https://doi.org/10.1007/BF01018227
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01018227