Skip to main content
Log in

Uniqueness and half-space nonuniqueness of gibbs states in Czech models

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. R. L. Dobrushin and S. B. Shlosman, “Constructive criterion for the uniqueness of Gibbs field,” in: Statistical Mechanics and Dynamical Systems, Birkhouser, New York (1985).

    Google Scholar 

  2. R. L. Dobrushin and S. B. Shlosman, “Completely analytical Gibbs fields,” in: Statistical Mechanics and Dynamical Systems, Birkhouser, New York (1985).

    Google Scholar 

  3. R. L. Dobrushin and E. A. Pechersky, in: Random Fields, Vol. 1, North-Holland (1981); pp. 223–262.

  4. Ch. J. Preston, “Random fields,” Lect. Notes in Math.,534 (1976).

  5. R. L. Dobrushin, Funktsional. Analiz i Ego Prilozhen.,2, 31 (1968).

    Google Scholar 

  6. J. Glimm, A. Jaffe, and T. Spencer, Commun. Math. Phys.,45, 203 (1975).

    Google Scholar 

  7. J. Fröhlich and E. Lieb, Commun. Math. Phys.,60, 233 (1978).

    Google Scholar 

  8. J. Fröhlich, R. Israel, E. Lieb, and B. Simon, Commun. Math. Phys.,62, 1 (1978).

    Google Scholar 

  9. J. Fröhlich, R. Israel, E. Lieb, and B. J. Simon, Stat. Phys.,22, 297 (1980)

    Google Scholar 

  10. R. L. Dobrushin and S. B. Shlosman, Sel. Math. Sov.,1, 317 (1981).

    Google Scholar 

  11. Ya. G. Sinai, Theory of Phase Transitions [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  12. R. L. Dobrushin and S. B. Shlosman, “Problem of the stability of ground states,” Preprint [in Russian], Institute of Information Transmission Problems, USSR Academy of Sciences, Moscow (1984).

    Google Scholar 

  13. V. A. Malyshev, “Perturbation of Gibbs random fields,” in: Multicomponent Random Systems [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  14. V. A. Malyshev, R. A. Minlos, E. A. Petrova, and Yu. A. Terletskii, “Generalized contour models,” in: Reviews of Science, Ser. Probability Theory and Mathematical Statistics, Vol. 19 [in Russian], VINITI, Moscow (1982).

    Google Scholar 

  15. S. B. Shlosman and E. A. Pecherskii, Abstracts of Papers at 6th International Symposium on Information Theory, Tashkent, 1984, Part 3 [in Russian], Fan, Tashkent (1984), pp. 270–272.

    Google Scholar 

  16. R. Kotecky and S. B. Shlosman, Commun. Math. Phys.,83, 493 (1982).

    Google Scholar 

Download references

Authors

Additional information

All-Union Scientific-Research Institute of the Organization, Control, and Economics of the Oil and Gas Industry. Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 66, No. 3, pp. 430–444, March, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shlosman, S.B. Uniqueness and half-space nonuniqueness of gibbs states in Czech models. Theor Math Phys 66, 284–293 (1986). https://doi.org/10.1007/BF01018227

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01018227

Keywords

Navigation