Journal of Statistical Physics

, Volume 18, Issue 3, pp 271–280 | Cite as

On the derivation of quantum kinetic equations. I. Collision expansions

  • Ch. G. van Weert
  • W. P. H. de Boer


A straightforward scheme for deriving quantum kinetic equations is presented. It is based on Bogoliubov's initiai condition of vanishing correlations in the infinite past and consists in the elimination of an initial oneparticle Wigner function between two nonlinear functionals. By performing the elimination to second order in the density the quantum analog of the Choh-Uhlenbeck three-particle collision term is obtained. The scheme may be extended to include relativistic particles as well as particles with internal degrees of freedom.

Key words

Nonequilibrium statistical mechanics quantum kinetic equation initial condition of Bogoliubov in-operators three-particle collisionterm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. N. Bogoliubov, inStudies in Statistical Mechanics I, J. de Boer and G. E. Uhlenbeck, eds. (North-Holland, Amsterdam, 1962).Google Scholar
  2. 2.
    E. G. D. Cohen, inTransport Phenomena in Fluids, H. J. M. Hanley, ed. (Marcel Dekker, New York, 1969).Google Scholar
  3. 3.
    R. Balescu,Equilibrium and Non-Equilibrium Statistical Mechanics (Wiley, New York, 1975).Google Scholar
  4. 4.
    P. Résibois, inMany Particle Physics, E. Meeron, ed. (Gordon and Breach, London, 1967).Google Scholar
  5. 5.
    J. J. Brey,Physica 86A:191 (1977).Google Scholar
  6. 6.
    P. Seglar,Nuovo Cimento 30A:9 (1975).Google Scholar
  7. 7.
    S. S. Schweber,An Introduction to Relativistic Quantum Field Theory (Harper and Row, New York, 1964).Google Scholar
  8. 8.
    M. S. Green,J. Chem. Phys. 25:836 (1956).Google Scholar
  9. 9.
    E. G. D. Cohen,Physica 28:1025, 1045 (1962).Google Scholar
  10. 10.
    Ch. G. van Weert and W. P. H. de Boer,Phys. Lett. 61A:281 (1977).Google Scholar
  11. 11.
    S. T. Choh and G. E. Uhlenbeck,The Kinetic Theory of Phenomena in Dense Gases (Univ. of Michigan, 1958).Google Scholar
  12. 12.
    W. P. H. de Boer and Ch. G. van Weert,J. Stat. Phys., this issue, following paper.Google Scholar
  13. 13.
    W. P. H. de Boer and Ch. G. van Weert,Physica 86A:67 (1977).Google Scholar
  14. 14.
    W. P. H. de Boer and Ch. G. van Weert,Phys. Lett. 50A:381 (1974).Google Scholar
  15. 15.
    S. Hess and L. Waldmann,Z. Naturforsch. 21a:1529 (1966).Google Scholar
  16. 16.
    R. F. Snider,J. Chem. Phys. 32:1051 (1960).Google Scholar
  17. 17.
    W. E. Brittin and W. R. Chappell,Rev. Mod. Phys. 34:620 (1962).Google Scholar
  18. 18.
    C. Bloch and C. De Dominicis,Nucl. Phys. 7:459 (1958); M. Gaudin,Nucl. Phys. 15:89(1960).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Ch. G. van Weert
    • 1
  • W. P. H. de Boer
    • 1
  1. 1.Instituut voor Theoretische FysicaUniversiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations