Journal of Statistical Physics

, Volume 62, Issue 3–4, pp 759–777 | Cite as

Glauber dynamics of fluctuations

  • D. Goderis
  • A. Verbeure
  • P. Vets
Articles

Abstract

We derive the time evolution of the normal fluctuations of a classical lattice spin system induced by a generalized Glauber dynamics. The canonical form of this dynamics is derived. We prove that it is asymptotically (i.e., after the central limit) free. The results are applied to give a rigorous proof of the macroscopic reciprocity relations and the linear theory for small deviations from equilibrium.

Key words

Central limit theorem normal fluctuations reciprocity relations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. De Masi, N. Ianiro, A. Pellegrinotti, and E. Presutti, A survey of the hydrodynamical behaviour of many-particle systems, inNonequilihrium Phenomena II, J. L. Lebowitz and E. Montroll, eds. (North-Holland, Amsterdam, 1984).Google Scholar
  2. 2.
    A. De Masi, E. Presutti, H. Spohn, and D. Wick,Ann. Prob. 14:409 (1986).Google Scholar
  3. 3.
    Th. Brox and H. Rost,Ann. Prob. 12:742 (1984).Google Scholar
  4. 4.
    D. Foster,Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions (Benjamin, Reading, Massachusetts, 1975).Google Scholar
  5. 5.
    H. Spohn, Large scale dynamics of interacting particles, part B, In preparation.Google Scholar
  6. 6.
    R. A. Holley and D. W. Stroock,Ann. Math. 110:333 (1979).Google Scholar
  7. 7.
    T. M. Liggett,Interacting Particle Systems (Springer-Verlag, 1985).Google Scholar
  8. 8.
    R. J. Glauber,J. Math. Phys. 4:294 (1963).Google Scholar
  9. 9.
    W. G. Sullivan, Markov Processes for Random Fields, Commun. DIAS, Series A, No. 23 (1975).Google Scholar
  10. 10.
    I. A. Ibragimov and Yu. V. Linnick,Independent and Stationary Sequences of Random Variables (Wolters-Noordhoff, 1971).Google Scholar
  11. 11.
    D. Goderis, A. Verbeure, and P. Vets, On the analyticity of the central limit, Preprint-KUL-TF-89/29.Google Scholar
  12. 12.
    Hui-Hsiung Kuo, Gaussian measures in Banach spaces,Lecture Notes in Mathematics, No. 463, A. Dold and B. Eckmann, eds. (Springer, 1975).Google Scholar
  13. 13.
    M. J. Christensen and A. T. Bharucha-Reid, Algebraic models for Gaussian measures on Banach spaces,Lecture Notes in Mathematics, No. 526, A. Dold and B. Eckmann, eds. (Springer 1975).Google Scholar
  14. 14.
    S. R. De Groot and P. Mazur,Non-equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).Google Scholar
  15. 15.
    D. Goderis, A. Verbeure, and P. Vets,J. Stat. Phys. 56:721 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • D. Goderis
    • 1
    • 2
  • A. Verbeure
    • 1
  • P. Vets
    • 1
    • 2
  1. 1.Instituut voor Theoretische FysicaUniversiteit LeuvenLeuvenBelgium
  2. 2.Onderzoeker IIKWBelgium

Personalised recommendations