Theoretical and Mathematical Physics

, Volume 65, Issue 2, pp 1154–1164 | Cite as

Nonlinear model of Schrödinger type: Conservation laws, Hamiltonian structure, and complete integrability

  • N. N. BogolyubovJr
  • A. K. Prikarpatskii
  • A. M. Kurbatov
  • V. G. Samoilenko


Nonlinear Model Hamiltonian Structure Complete Integrability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. C. L. Hutson and J. Pym, Applications of Functional Analysis and Operator Theory, London (1980).Google Scholar
  2. 2.
    A. I. Skripnik, A. K. Prikarpatskii, and V. G. Samoilenko, Dokl. Akad. Nauk SSSR, Ser. A, No. 5, 21 (1985).Google Scholar
  3. 3.
    A. V. Balakrishnan, Applied Functional Analysis [in Russian], Nauka, Moscow (1980).Google Scholar
  4. 4.
    B. A. Cuperschmidt, Lecture Notes Math., No. 775, 162 (1980).Google Scholar
  5. 5.
    V. I. Arnol'd, A. N. Varchenko, and S. M. Gusein-Zade, Aspects of Differentiable Mappings: Classification of Critical Points, Caustics, and Wave Fronts [in Russian], Nauka, Moscow (1982).Google Scholar
  6. 6.
    P. D. Lax, Commun. Pure Appl. Math.,28, 141 (1975).Google Scholar
  7. 7.
    S. P. Novikov (ed.), The Theory of Solitons: The Inverse Scattering Method [in Russian], Nauka, Moscow (1980).Google Scholar
  8. 8.
    A. K. Prikarpatskii and V. G. Samoilenko, “Dynamical systems associated with a periodic Dirac operator and their complete integrability,” Preprint 83-44 [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1983).Google Scholar
  9. 9.
    H.-H. Chen, Y. Lee, and C. Liu, Phys. Scr.,20, 490 (1979).Google Scholar
  10. 10.
    B. Fuchsteiner, Prog. Theor. Phys.,68, 1082 (1982).Google Scholar
  11. 11.
    Yu. A. Mitropol'skii, A. K. Prikarpatskii, and V. G. Samoilenko, Dokl. Akad. Nauk SSSR,297, 1217 (1985).Google Scholar
  12. 12.
    Yu. N. Sidorenko, Dokl. Akad. Nauk SSSR. Ser. A, No. 11, 25 (1985).Google Scholar
  13. 13.
    M. Wadati and K. Sogo, J. Phys. Soc. Jpn.,52, 394 (1983).Google Scholar
  14. 14.
    A. R. Its and V. B. Matveev, Zap. Nauchn. Semin. LOMI,101, 64 (1981).Google Scholar
  15. 15.
    A. K. Prikarpatskii, Teor. Mat. Fiz.,47, 323 (1981).Google Scholar
  16. 16.
    V. I. Arnol'd, Mathematical Methods of Classical Mechanics (Graduate Texts in Mathematics, Vol. 60), Springer, New York (1978).Google Scholar
  17. 17.
    A. R. Its, Vestn. Leningr. Un-ta, No. 7, 39 (1976).Google Scholar
  18. 18.
    A. R. Its, in: Problems of Mathematical Physics [in Russian], Leningrad State University (1980), pp. 118–127.Google Scholar
  19. 19.
    G. Springer, Introduction to Riemann Surfaces, Addison-Wesley, Reading, Mass. (1957).Google Scholar
  20. 20.
    B. A. Dubrovin, Funktsional. Analiz i Ego Prilozhen.,9, 41 (1975).Google Scholar
  21. 21.
    V. B. Matveev, “Abelian functions and solitons,” Preprint No. 373. Wroclaw University (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • N. N. BogolyubovJr
  • A. K. Prikarpatskii
  • A. M. Kurbatov
  • V. G. Samoilenko

There are no affiliations available

Personalised recommendations