Theoretical and Mathematical Physics

, Volume 58, Issue 2, pp 207–210 | Cite as

Two-dimensional ice-type vertex model with two types of staggered sites

II. A system of two interacting modified KDP models
  • R. Z. Bariev


Vertex Model Stagger Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    L. J. De Jong and A. R. Miedema, Adv. Phys.,23, 1 (1974).Google Scholar
  2. 2.
    S. R. Salinas and J. F. Nagle, Phys. Rev. B,9, 4920 (1974).Google Scholar
  3. 3.
    A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions [in Russian], Nauka, Moscow (1982), p. 382.Google Scholar
  4. 4.
    M. A. Mikulinskii, Usp. Fiz. Nauk,110, 213 (1973).Google Scholar
  5. 5.
    R. J. Baxter, Ann. Phys. (N. Y.)70, 193 (1972).Google Scholar
  6. 6.
    L. P. Kadanoff and F. J. Wegner, Phys. Rev. B,4, 3989 (1971).Google Scholar
  7. 7.
    R. Z. Bariev, Teor. Mat. Fiz.,49, 261 (1981).Google Scholar
  8. 8.
    J. F. Nagle, Phys. Rev.,152, 190 (1966).Google Scholar
  9. 9.
    E. H. Lieb, Phys. Rev. Lett.,19, 108 (1967).Google Scholar
  10. 10.
    F. J. Wu, Phys. Rev. Lett.,18, 605 (1967).Google Scholar
  11. 11.
    F. J. Wu, Phys. Rev.,168, 539 (1968).Google Scholar
  12. 12.
    P. W. Kasteleyn, J. Math. Phys.,4, 287 (1963).Google Scholar
  13. 13.
    C. N. Yang, Phys. Rev. Lett.,19, 1312 (1967).Google Scholar
  14. 14.
    E. H. Lieb and F. Y. Wu, Phys. Rev. Lett.,20, 1445 (1968).Google Scholar
  15. 15.
    L. A. Takhtadzhyan and L. D. Faddeev, Usp. Mat. Nauk,34, 13 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • R. Z. Bariev

There are no affiliations available

Personalised recommendations