Theoretical and Mathematical Physics

, Volume 58, Issue 2, pp 196–202 | Cite as

Equivalence of two forms of the nonequilibrium statistical operator

  • M. I. Auslender
  • V. P. Kalashnikov
Article

Keywords

Nonequilibrium Statistical Operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    D. N. Zubarev, Dokl. Akad. Nauk SSSR,140, 92 (1961);164, 537 (1965); Nonequilibrium Statistical Thermodynamics, Plenum, New York (1974).Google Scholar
  2. 2.
    J. A. McLennan, Phys. Fluids,4, 1319 (1961); Adv. Chem. Phys.,5, 261 (1963).Google Scholar
  3. 3.
    D. N. Zubarev and V. P. Kalashnikov, Teor. Mat. Fiz.,3, 126 (1970).Google Scholar
  4. 4.
    D. N. Zubarev, Teor. Mat. Fiz.,3, 276 (1970); Modern Methods of the Theory of Nonequilibrium Processes. Modern Problems of Mathematics, Vol. 15 (Reviews of Science and Technology) [in Russian], VINITI, Moscow (1980), pp. 131–226.Google Scholar
  5. 5.
    D. N. Zubarev and V. P. Kalashnikov, Teor. Mat. Fiz.,7, 372 (1971).Google Scholar
  6. 6.
    S. V. Tishchenko, Teor. Mat. Fiz.,25, 407 (1975).Google Scholar
  7. 7.
    M. I. Auslender, Teor. Mat. Fiz.,21, 354 (1974).Google Scholar
  8. 8.
    D. Ruelle, Statistical Mechanics, New York (1969).Google Scholar
  9. 9.
    A. Isihara, Statistical Physics, Academic Press, New York (1971).Google Scholar
  10. 10.
    J. Bendat and S. Sherman, Trans. Am. Math. Soc.,79, 58 (1955).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • M. I. Auslender
  • V. P. Kalashnikov

There are no affiliations available

Personalised recommendations