Journal of Statistical Physics

, Volume 38, Issue 1–2, pp 313–327 | Cite as

Spontaneous symmetry breaking of optimum fluctuations in semiconductors

  • F. V. Kusmartsev
  • E. I. Rashba
Articles

Abstract

The optimum fluctuation method (OFM) has been applied to the tails of the density of states, arising near the edges of the spherically symmetric degenerate bands. In this case the optimum fluctuations (OF) have been shown to undergo a qualitative change, as compared to the case of nondegenerate bands, they lose the spherical symmetry and become elongated or flattened. This means that spontaneous breaking of symmetry takes place. In addition to the usual mechanism of tailing due to the potential of impurities, another mechanism connected with the field of random deformations, arising due to difference in the size of the guest and host atoms, has been also considered. The method used for treating this problem is intimately related to the techniques of the theory of self-trapping. The density of states in the tails, and in some cases the shape of OFs, have been found for all the cases under consideration.

Key words

Density of state tails spontaneous symmetry breaking optimum fluctuation method degenerate energy bands virial theorem for nonlinear functionals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. M. Lifshitz, S. A. Gredeskul, and L. A. Pastur,Introduction to the Theory of Disordered Systems (Nauka, Moscow, 1982) (English edition: J. Wiley & Son, New York, in press).Google Scholar
  2. 2.
    B. I. Halperin and M. Lax,Phys. Rev. 148:722 (1966).Google Scholar
  3. 3.
    J. Zittarz and J. S. Langer,Phys. Rev. 148:741 (1966).Google Scholar
  4. 4.
    I. M. Lifshitz,Zh. Exp. Teor. Fiz. 53:743 (1967) [Sov. Phys.-JETP 26:462 (1968)].Google Scholar
  5. 5.
    B. I. Shklovskii and A. L. Efros,Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1981) (English edition: Springer-Verlag, Berlin, 1984).Google Scholar
  6. 6.
    V. L. Bonch-Bruevich, I. P. Zvyagin, R. Keiper, A. G. Mironov, R. Enderlein, and B. Esser,Electronentheorie of Disordered Semiconductors (Nauka, Moscow, 1981) (German edition: Elektronentheorie den ungeorneter Halbleiter, Deutscher Verlag der Wissenschaften, Berlin, 1984).Google Scholar
  7. 7.
    S. Lai and M. V. Klein,Phys. Rev. Lett. 44:1087 (1980).Google Scholar
  8. 8.
    E. Cohen and M. D. Sturge,Phys. Rev. B 25:3828 (1982).Google Scholar
  9. 9.
    S. Permogorov, A. Reznitskii, S. Verbin, G. O. Müller, P. Flögel, and N. Nikiforova,Phys. Stat. Sol. (b) 113:589, 1982.Google Scholar
  10. 10.
    R. J. Nelson, inExcitons, E. I. Rashba and M. D. Sturge, eds. (North-Holland, Amsterdam, 1982), p. 319.Google Scholar
  11. 11.
    S. D. Baranovskii and A. L. Efros,Fiz. Tekh. Polupr. 12:2233 (1978) [Sov. Phys. Semicond. 12:1328 (1978)].Google Scholar
  12. 12.
    F. V. Kusmartsev and E. I. Rashba,Pis'ma Zh. Eksp. Teor. Fiz. 37:106 (1982) [Sov. Phys.-JETP Lett. 37:130 (1983)].Google Scholar
  13. 13.(a)
    F. V. Kusmartsev and E. I. Rashba, inGroup Theoretical Methods in Physics, vol. II (Proc. of Int. Seminar, Zvenigorod, 1982), (Nauka, Moscow, 1983), p. 453 and (Gordon and Breach, London, 1984), p. 469.Google Scholar
  14. 13.(b)
    F. V. Kusmartsev and E. I. Rashba, inCooperative Phenomena (Proc. of Int. Symp. “Synergetics and Cooperative Phenomena in Solids and Macromolecules,” Tallinn 1982) (Valgus, Tallinn, 1983), p. 193.Google Scholar
  15. 14.
    N. N. Ablyazov, M. E. Raikh, and A. L. Efros,Pis'ma Zh. Eksp. Teor. Fiz. 38:103 (1983) [Sov. Phys.-JETP Lett. 38:120 (1983)].Google Scholar
  16. 15.
    S. A. Permogorov, A. N. Reznitskii, S. Yu. Verbin, and V. G. Lysenko,Pis'ma Zh. Eksp. Teor. Fiz. 37:390 (1983) [Sov. Phys.-JETP Lett. 37:462 (1983)].Google Scholar
  17. 16.
    J. M. Luttinger,Phys. Rev. 102:1030 (1956).Google Scholar
  18. 17.
    G. L. Bir and G. E. Pikus,Symmetry and Strain-Induced Effects in Semiconductors (Nauka, Moscow, 1972) [English edition: Halsted Press, New York, 1974].Google Scholar
  19. 18.
    R. A. Faulkner,Phys. Rev. 175:991 (1968).Google Scholar
  20. 19.
    E. I. Rashba, inExcitons, E. I. Rashba and M. D. Sturge, eds. (North-Holland, Amsterdam, 1982), p. 543.Google Scholar
  21. 20.
    F. V. Kusmartsev and E. I. Rashba,Zh. Eksp. Teor. Fiz. 86:1142 (1984).Google Scholar
  22. 21.
    S. I. Pekar,Research in the Electron Theory of Crystals, (Gostekhizdat, Moscow, 1951) [German edition:Untersuchungen über die Elektronentheorie des Kristallen (Akademie Verlag, Berlin, 1954)].Google Scholar
  23. 22.
    J. W. Allen,J. Phys. C-Solid State Phys. 1:1136 (1968);4:1936 (1971).Google Scholar
  24. 23.
    F. V. Kusmartsev and E. I. Rashba,Fiz. Tekh. Polupr. 18:691 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • F. V. Kusmartsev
    • 1
  • E. I. Rashba
    • 1
  1. 1.L. D. Landau Institute for Theoretical PhysicsAcademy of Sciences of the U.S.S.R.MoscowUSSR

Personalised recommendations