Theoretical and Mathematical Physics

, Volume 84, Issue 2, pp 787–793 | Cite as

Modulation instability of solutions of the nonlinear Schrödinger equation

  • G. L. Alfimov
  • A. R. Its
  • N. E. Kulagin
Article

Keywords

Modulation Instability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, Zh. Eksp. Teor. Fiz.,89, 1542 (1985).Google Scholar
  2. 2.
    A. R. Its, A. V. Rybin, and M. A. Sall', Teor. Mat. Fiz.,74, 29 (1988).Google Scholar
  3. 3.
    B. A. Dubrovin, I. M. Krichever, T. G. Malanyuk, and V. G. Makhankov, “Exact solutions to a time-dependent Schrödinger equation with self-consistent potential,” Preprint E5-87-710 [in English], JINR, Dubna (1987).Google Scholar
  4. 4.
    A. R. Its and V. P. Kotlyarov, Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 11, 965 (1976).Google Scholar
  5. 5.
    A. R. Its, Vestn. Leningr. Univ., No. 7, 39 (1976).Google Scholar
  6. 6.
    B. A. Dubrovin, in: Reviews of Science and Technology. Modern Problems of Mathematics, Vol. 23 [in Russian], VINITI, Moscow (1983), pp. 33–76.Google Scholar
  7. 7.
    A. R. Its, in: Problems of Mathematical Physics, No. 10 [in Russian], Leningrad State University (1983), pp. 118–137.Google Scholar
  8. 8.
    E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge (1965).Google Scholar
  9. 9.
    V. M. Eleonskii, N. E. Kulagin, and N. S. Novoshilova, Teor. Mat. Fiz.,65, 391 (1985).Google Scholar
  10. 10.
    V. M. Eleonskii, N. E. Kulagin, L. M. Lerman, and Ya. L. Umanskii, Izv. Vyssh. Uchebn. Zaved. Radiofiz.,31, 149 (1988).Google Scholar
  11. 11.
    M. V. Babich, A. I. Bobenko, and V. B. Matveev, Izv. Akad. Nauk SSSR, Ser. Mat.,49, 511 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • G. L. Alfimov
  • A. R. Its
  • N. E. Kulagin

There are no affiliations available

Personalised recommendations