Advertisement

Theoretical and Mathematical Physics

, Volume 78, Issue 3, pp 300–308 | Cite as

Nonasymptotic form of the recursion relations of the three-dimensional ising model

  • M. P. Kozlovskii
Article

Keywords

Ising Model Recursion Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    I. R. Yukhnovskii, Phase Transitions of the Second Kind. The Method of Collective Variables [in Russian], Naukova Dumka, Kiev (1985).Google Scholar
  2. 2.
    I. R. Yukhnovskii, Teor. Mat. Fiz.,36, 373 (1978).Google Scholar
  3. 3.
    K. G. Wilson and J. Kogut, “The renormalization group and the ε expansion,” Phys. Rep. Phys. Lett. C,12, No. 2, 75 (1974).Google Scholar
  4. 4.
    I. R. Yukhnovskii, I. A. Vakarchuk, and Yu. K. Rudavskii, Teor. Mat. Fiz.,50, 313 (1982).Google Scholar
  5. 5.
    S. L. Ginzburg, Zh. Eksp. Teor. Fiz.,68, 273 (1975).Google Scholar
  6. 6.
    G. A. Baker (Jr), B. G. Nickel, and D. I. Merion, Phys. Rev. B,17, 1365 (1977).Google Scholar
  7. 7.
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover (1964).Google Scholar
  8. 8.
    M. P. Kozlovskii, Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 10, 58 (1984).Google Scholar
  9. 9.
    I. R. Yukhnovskii, M. P. Kozlovskii, and V. A. Kolomiets, Ukr. Fiz. Zh.,27, 925 (1982).Google Scholar
  10. 10.
    M. P. Kozlovskii and I. V. Pylyuk, “Free energy and other thermodynamic functions near the point of a phase transition of the second kind,” Preprint ITF-85-23E [in English], Institute of Theoretical Physics, Ukrainian SSR Academy of Sciences, Kiev (1985).Google Scholar
  11. 11.
    M. P. Kozlovskii, Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 10, 58 (1984).Google Scholar
  12. 12.
    I. R. Yukhnovskii and M. P. Kozlovskii, Ukr. Fiz. Zh.,22, 1124 (1977).Google Scholar
  13. 13.
    M. P. Kozlovskii, “Critical properties of the Ising model. The ρε model. General recursion relations,” Preprint ITF-82-104R [in Russian], Institute of Theoretical Physics, Ukrainian SSR Academy of Sciences, Kiev (1982).Google Scholar
  14. 14.
    I. V. Pylyuk and M. P. Kozlovskii, “Investigation of the Ising model using non-Gaussian basis measures,” Preprint ITF-87-31R [in Russian], Institute of Theoretical Physics, Ukrainian SSR Academy of Sciences, Kiev (1987).Google Scholar
  15. 15.
    M. A. Moore, D. Jasnow, and M. Wortis, Phys. Rev. Lett.,22, 940 (1969).Google Scholar
  16. 16.
    J. Als-Nielsen, “Neutron scattering and spatial correlation near the critical point,” in: Phase Transitions and Critical Phenomena, Vol. 5a (eds. C. Domb and M. S. Green), Academic Press, New York (1975), p. 87.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • M. P. Kozlovskii

There are no affiliations available

Personalised recommendations