Advertisement

Fluid Dynamics

, Volume 8, Issue 1, pp 75–83 | Cite as

Investigation of the reflection of perturbations from the subsonic part of a laval nozzle

  • A. N. Kraiko
  • A. A. Osipov
Article
  • 25 Downloads

Keywords

Reflection Laval Nozzle Subsonic Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    H. S. Tsien, “Transfer functions of rocket nozzles,” ARS Jnl. (Jet Propulsion),22, No. 13, 139–143, 162 (1952).Google Scholar
  2. 2.
    L. Crocco and S. I. Cheng, Theory of Combustion Instability in Liquid Propellant Rocket Motors, Pergamon.Google Scholar
  3. 3.
    B. V. Raushenbakh, Vibrational Combustion [in Russian], Fizmatgiz, Moscow (1961).Google Scholar
  4. 4.
    C. E. Mitchell, L. Crocco, and W. A. Sirignano, “Nonlinear longitudinal instability in rocket motors with concentrated combustion”, Combust. Sci. and Techn.1, No. 1, 35–64 (1969).Google Scholar
  5. 5.
    R. D. Gould, “Combustion instability studies with plastic propellant,” AIAA Paper No. 69-478 (1969).Google Scholar
  6. 6.
    R. S. Brown and R. J. Muzzy, “Linear and nonlinear pressure coupled combustion instability of solid propellants,” AIAA Paper No. 69-479 (1969).Google Scholar
  7. 7.
    A. K. Roberts and W. G. Brownlee, “Nonlinear longitudinal combustion instability: the influence of propellant composition,” AIAA Paper No. 69-480 (1969).Google Scholar
  8. 8.
    C. E. Mitchell, “Stability limits for a liquid rocket engine using a droplet vaporization model,” AIAA Paper No. 69-483 (1969).Google Scholar
  9. 9.
    F. E. C. Culick, “Stability of longitudinal oscillations with pressure and velocity coupling in a solid propellant rocket”, Combust. Sci. and Techn.,2, No. 4, 179–201 (1970).Google Scholar
  10. 10.
    M. W. Beckstead and F. E. C. Culick, “A comparison of analysis and experiment for solid-propellant combustion instability”, AIAA Jnl.,9, No. 1, 147–154 (1971).Google Scholar
  11. 11.
    A. K. Roberts and W. G. Brownlee, “Nonlinear longitudinal combustion instability: influence of propellant composition,” AIAA Jnl.,9, No. 1, 140–146 (1971).Google Scholar
  12. 12.
    A. G. Kulikovskii and F. A. Slobodkina, “On the stability of longitudinal stationary flows in the neighborhood of the point of transition through the speed of sound”, Prikl. Matem. i Mekh.,31, No. 4, 593–602 (1967).Google Scholar
  13. 13.
    M. Van Dyke, Perturbation Methods in Fluid Mechanics, Academic Press (1964).Google Scholar
  14. 14.
    B. T. Zinn and L. Crocco, “Periodic finite-amplitude in slowly converging nozzles,” Astronaut. Acta,13, No. 5/6, 481–488 (1968).Google Scholar
  15. 15.
    B. T. Zinn and L. Crocco, “The nozzle boundary condition in the nonlinear rocket instability problem”, Astronaut. Acta,13, No. 5/6, 489–496 (1968).Google Scholar
  16. 16.
    L. Crocco, R. Monti, and J. Grey, “Verification of nozzle admittance theory by direct measurement of the admittance parameter”, ARS Jnl.,31, No. 6, 771–775 (1961).Google Scholar
  17. 17.
    L. D. Landau and E. M. Lifshits, Mechanics of Continuous Media [in Russian], Gostekhizdat, Moscow (1953).Google Scholar
  18. 18.
    S. K. Godunov, “Difference method of numerical computation of discontinuous solutions of hydrodynamics equations,” Matem. Sb.,47(89), No. 3, 271–306 (1959).Google Scholar
  19. 19.
    S. K. Godunov, A. V. Zabrodin, and G. P. Prokopov, “Difference scheme for two-dimensional non-stationary gasdynamics problems and computation of flow with a detached shock”, Zh. Vychisl. Matem. i Matem. Fiz.,1, No. 6, 1020–1050 (1961).Google Scholar
  20. 20.
    M. Ya. Ivanov and A. N. Kraiko, “Numerical solution of the direct problem of mixed flow in nozzles,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. i Gaza, No. 5, 77–83 (1969).Google Scholar
  21. 21.
    V. T. Grin', M. Ya. Ivanov, and A. N. Kraiko, “Investigation of the stagnation flow dynamics of an ideal gas with a closing compression shock,“ Izv. Akad. Nauk SSSR, Mekh. Zhidk. i Gaza, No. 4, 23–32 (1970).Google Scholar
  22. 22.
    P. Morse, Vibration and Sound, McGraw-Hill (1948).Google Scholar
  23. 23.
    W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Wiley (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • A. N. Kraiko
    • 1
  • A. A. Osipov
    • 1
  1. 1.Moscow

Personalised recommendations