Skip to main content

Advertisement

Log in

Integrable models of quantum one-dimensional magnets with O(n) and Sp(2k) symmetry

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. L. D. Faddeev, “Quantum completely integrable field theory models,” Preprint R-2-79 [in Russian], Leningrad Branch, V. A. Steklov Mathematics Institute (1979).

  2. L. A. Takhtadzhyan and L. D. Faddeev, Usp. Mat. Nauk,34, 13 (1979).

    Google Scholar 

  3. A. G. Izergin and V. E. Korepin, Fiz. Elem. Chastits At. Yadra,13, 501 (1982).

    Google Scholar 

  4. P. P. Kulish and E. K. Sklyanin, Lect. Notes in Phys.,151, 61 (1982).

    Google Scholar 

  5. L. D. Faddeev, “Integrable models in 1+1 dimensional quantum field theory,” Preprint S. Ph. T. 182/76, CEN-SACLAY (1982).

  6. H. B. Thacker, “Exact integrability in quantum field theory,” FERMILAB-Conf.-80/69-THY (1980).

  7. L. A. Takhtajan, Phys. Lett. A,87, 479 (1982); H. M. Babujian, Nucl. Phys. B,215[FS7], 317 (1983).

    Google Scholar 

  8. P. P. Kulish and N. Yu. Reshetikhin, Zap. Nauchn. Semin. LOMI,101, 101 (1981).

    Google Scholar 

  9. E. K. Sklyanin, Funktsional. Analiz i Ego Prilozhen.,16, 27 (1982).

    Google Scholar 

  10. P. P. Kulish, N. Yu. Reshetikhin, and E. K. Sklyanin, Lett. Math. Phys.,5, 393 (1981).

    Google Scholar 

  11. P. P. Kulish and N. Yu. Reshetikhin, Zap. Nauchn. Semin. LOMI,120, 92 (1982).

    Google Scholar 

  12. P. P. Kulish and N. Yu. Reshetikhin, J. Phys. A,16, L591 (1983).

    Google Scholar 

  13. V. G. Drinfel'd, Dokl. Akad. Nauk SSSR,273, 531 (1983).

    Google Scholar 

  14. N. Yu. Reshetikhin and L. D. Faddeev, Teor. Mat. Fiz.,56, 323 (1983).

    Google Scholar 

  15. V. E. Korepin, Dokl. Akad. Nauk SSSR,256, 1361 (1985).

    Google Scholar 

  16. N. Yu. Reshetikhin, Teor. Mat. Fiz.,63, 197 (1985).

    Google Scholar 

  17. V. O. Tarasov, L. A. Takhtadzhyan, and L. D. Faddeev, Teor. Mat. Fiz.,57, 163 (1983).

    Google Scholar 

  18. A. B. Zamolodchikov and Al. B. Zamolodchikov, Ann. Phys. (Utrecht),120, 253 (1979).

    Google Scholar 

  19. R. Schankar and E. Witten, Nucl. Phys. B,141, 349 (1978).

    Google Scholar 

  20. B. Berg, M. Karowski, V. Kurak, and P. Weisz, Nucl. Phys. B,134, 125 (1978).

    Google Scholar 

  21. M. D. Gould, J. Aust. Math. Soc. B,20, 401 (1978).

    Google Scholar 

  22. L. A. Takhtadzhyan, Zap. Nauchn. Semin. LOMI,101, 158 (1981).

    Google Scholar 

  23. N. Yu. Reshetikhin, Zh. Eksp. Teor. Fiz.,84, 1190 (1983).

    Google Scholar 

  24. L. A. Takhtadzhyan and L. D. Faddeev, Zap. Nauchn. Semin. LOMI,109, 134 (1981).

    Google Scholar 

  25. P. P. Kulish and N. Yu. Reshetikhin, Zh. Eksp. Teor. Fiz.,80, 214 (1981).

    Google Scholar 

  26. B. Sutherland, Phys. Rev. B,12, 3795 (1975).

    Google Scholar 

  27. A. P. Fordy and P. P. Kulish, Commun. Math. Phys.,89, 427 (1983).

    Google Scholar 

Download references

Authors

Additional information

Leningrad Branch, V. A. Steklov Mathematics Institute, USSR Academy of Sciences. Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 63, No. 3, pp. 347–366, June, 1985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reshetikhin, N.Y. Integrable models of quantum one-dimensional magnets with O(n) and Sp(2k) symmetry. Theor Math Phys 63, 555–569 (1985). https://doi.org/10.1007/BF01017501

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01017501

Keywords

Navigation