Journal of Chemical Ecology

, Volume 16, Issue 8, pp 2589–2604 | Cite as

Flight and landing behavior ofTrypodendron lineatum (Coleoptera: Scolytidae) in response to different semiochemicals

  • S. M. Salom
  • J. A. McLean


The responses of the striped ambrosia beetle,Trypodendron lineatum (Olivier) (Coleoptera: Scolytidae), to modified drainpipe traps baited with the host attractant ethanol, the aggregation pheromone lineatin, both alone and in combination, were studied in a wind tunnel. Exposure of males to ethanol increased their frequency of steady, upwind flight; however, only lineatin was effective in inducing them to land on and enter the traps. In contrast, exposure of females to either ethanol or lineatin alone resulted in an increased frequency of trap landing and entry. Both compounds released simultaneously did not significantly increase the frequency of trap landing and entry for either sex. These responses are consistent with the life history strategies used by both sexes to seek and colonize suitable host material.

Key words

Trypodendron lineatum ambrosia beetle Coleoptera Scolytidae semiochemicals flight behavior wind tunnel drainpipe trap 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angerilli, N., andMcLean, J.A. 1984. Wind tunnel and field observations of western spruce budworm responses to pheromone-baited traps.J. Entomol. Soc. B.C. 81:10–16.Google Scholar
  2. Bauer, J., andVité, J.P. 1975. Host selection byTrypodendron lineatum.Naturwissenschaften 62:539.Google Scholar
  3. Bennett, R.B., andBorden, J.H. 1971. Flight arrestment of tetheredDendroctonus pseudotsugae andTrypodendron lineatum (Coleoptera: Scolytidae) in response to olfactory stimuli.Ann. Entomol. Soc. Am. 64:1273–1286.Google Scholar
  4. Borden, J.H. 1985. Aggregation pheromones, pp. 257–285,in G.A. Kerkut and L.T. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry, and Pharmacology. Vol. 9, Behavior. Pergamon Press, Oxford.Google Scholar
  5. Borden, J.H. 1990. Use of semiochemicals to manage coniferous tree pests in western Canada, pp. 281–315,in R. Ridgeway, R.M. Silverstein, and M. Inscoe (eds.). Behavior-Modifying Chemicals for Insect Management: Application of Pheromones and Other Attractants. Marcel Decker, Inc., New York.Google Scholar
  6. Borden, J.H., Handley, J.R., Johnston, B.D., Macconnell, J.G., Silverstein, R.M., Slessor, K.N., Swigar, A.A., andWong, D.T.W. 1979. Synthesis and field testing of 4,6,6-lineatin, the aggregation pheromone ofTrypodendron lineatum (Coleoptera, Scolytidae).J. Chem. Ecol. 5:681–689.Google Scholar
  7. Borden, J.H., Chong, L., Slessor, K.N., Oehlschlager, A.C., Pierce, H.D., Jr., andLindgren, B.S. 1981. Allelochemic activity of aggregation pheromones between three sympatric species of ambrosia beetles (Coleoptera: Scolytidae).Can. Entomol. 113:557–563.Google Scholar
  8. Borden, J.H., King, C.J., Lindgren, B.S., Chong, L., Gray, D.R., Oehlschlager, A.C., Slessor, K.N., andPierce, H.D., Jr. 1982. Variation in response ofTrypodendron lineatum from two continents to semiochemicals and trap form.Environ. Entomol. 11:403–408.Google Scholar
  9. Borden, J.H., Hunt, D.W.A., Miller, D.R., andSlessor, K.N. 1986. Orientation in forest Coleoptera: An uncertain outcome of responses by individual beetles to variable stimuli, pp. 97–110,in T.L. Payne, M.C. Birch, and C.J.E. Kennedy (eds.). Mechanisms in Insect Olfaction. Clarendon Press, Oxford.Google Scholar
  10. David, C.T. 1986. Mechanisms of directional flight, pp. 49–57,in T.L. Payne, M.C. Birch, and C.J.E. Kennedy (eds.). Mechanisms in Insect Olfaction. Clarendon Press, Oxford.Google Scholar
  11. Dickens, J.L. 1981. Behavioral and electrophysiological responses of the bark beetle,Ips typographus, to potential pheromone components.Physiol. Entomol. 6:251–261.Google Scholar
  12. Francia, F.C., andGraham, K. 1967. Aspects of orientation behavior in the ambrosia beetleTrypodendron lineatum (Olivier).Can. J. Zool. 45:985–1002.Google Scholar
  13. Graham, K. 1959. Release by flight exercise of the chemotropic response from photopositive domination in a scolytid beetle.Nature 184:283–284.Google Scholar
  14. Kleinbaum, D.G., andKupper, L.L. 1978. Applied Regression and Other Multivariable Methods. Duxbury Press, California. 486 pp.Google Scholar
  15. Kydonieus, A.F., andBeroza, M. 1981. The Hercon dispenser formulation and recent test results, pp. 445–454,in E.R. Mitchell (ed.). Management of Insect Pests With Semiochemicals: Concepts and Practice. Plenum Press, New York.Google Scholar
  16. Lindgren, B.S. 1983. A multiple funnel trap for scolytid beetles (Coleoptera).Can. Entomol. 115:299–302.Google Scholar
  17. Lindgren, B.S., Borden, J.H., Chong, L., Friskie, L.M., andOrr, D.B. 1983. Factors influencing the efficiency of pheromone-baited traps for three species of ambrosia beetles (Coleoptera: Scolytidae).Can. Entomol. 115:303–313.Google Scholar
  18. MacConnell, J.G., Borden, J.H., Silverstein, R.M., andStokkink, E. 1977. Isolation and tentative identification of lineatin, a pheromone from the frass ofTrypodendron lineatum (Coleoptera: Scolytidae).J. Chem. Ecol. 5:549–561.Google Scholar
  19. McLean, J.A., Bakke, A., andNiemeyer, H. 1987. An evaluation of three traps and two lures for the ambrosia beetleTrypodendron lineatum (Oliv.) (Coleoptera: Scolytidae) in Canada, Norway, and West Germany.Can. Entomol. 119:273–280.Google Scholar
  20. Moeck, H.A. 1970. Ethanol as the primary attractant for the ambrosia beetleTrypodendron lineatum (Coleoptera: Scolytidae)Can. Entomol. 102:985–995.Google Scholar
  21. Moeck, H.A. 1971. Field test of ethanol as a scolytid attractant.Can. Dep. Fish. For. Bi-Mon. Res. Notes 27:11–12.Google Scholar
  22. Nijholt, W.W., andSchonherr, J. 1976. Chemical response behavior of scolytids in West Germany and western Canada.Can. For. Ser. Bi-Mon. Res. Notes 32:31–32.Google Scholar
  23. Paiva, M.R., andKiesel, K. 1985. Field responses ofTrypodendron spp. (Col., Scolytidae) to different concentrations of lineatin and alpha-pinene.Z. Angew Entomol. 99:442–448.Google Scholar
  24. Rudinsky, J.A., andDaterman, G.E. 1964. Field studies on flight patterns and olfactory responses of ambrosia beetles on Douglas-fir forests of western Oregon.Can. Entomol. 96:1339–1352.Google Scholar
  25. Salom, S.M. 1989. Dispersal and flight behavior ofTrypodendron lineatum (Olivier) (Coleoptera: Scolytidae) as influenced by semiochemical and environmental factors. PhD dissertation. University of British Columbia, Vancouver, B.C. 195 pp.Google Scholar
  26. Salom, S.M., andMcLean, J.A. 1988. Semiochemicals for capturing the ambrosia beetle,Trypodendron lineatum, in multiple funnel traps in British Columbia.J. Entomol. Soc. B.C. 85:34–39.Google Scholar
  27. SAS. 1985. SAS User's Guide: Statistics. SAS Institute, Cary, North Carolina.Google Scholar
  28. Schlyter, F.J., Lofqvist, J., andByers, J.A. 1987. The behavioral sequence in attraction to pheromone sources in the bark beetleIps typographus.Physiol. Entomol. 12:185–196.Google Scholar
  29. Shore, T.L., andMcLean, J.A. 1983. A further evaluation of the interactions between the pheromones and two host kairomones of the ambrosia beetlesTrypodendron lineatum andGnathotrichus sulcatus (Coleoptera: Scolytidae).Can. Entomol. 115:1–5.Google Scholar
  30. Vité, J.P., andBakke, A. 1979. Synergism between chemical and physical stimuli in host colonization by an ambrosia beetle.Naturwissenschaften 66:528–529.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • S. M. Salom
    • 2
  • J. A. McLean
    • 1
  1. 1.Department of EntomologyVirginia Polytechnic Institute & State UniversityBlacksburg
  2. 2.Faculty of ForestryUniversity of British ColumbiaVancouverCanada

Personalised recommendations