Journal of Chemical Ecology

, Volume 16, Issue 8, pp 2401–2428 | Cite as

Cinnamyl derivatives and monoterpenoids as nonspecific ovipositional deterrents of the onion fly

  • R. S. Cowles
  • J. R. Miller
  • R. M. Hollingworth
  • M. T. Abdel-Aal
  • F. Szurdoki
  • K. Bauer
  • G. Matolcsy


Laboratory dose-response choice tests and discriminate-dosage bioassays revealed wide variation in the effectiveness of cinnamyl, cinnamoyl, monoterpene, and phenethyl alcohol derivatives as ovipositional deterrents toDelia antiqua (Meigen), the onion fly. (E)-Cinnamic acids were not detectably deterrent. When formulated in particles of polyethylene glycol, (E)-cinnamaldehyde had a BR90 (concentration eliciting 90% deterrency) of 1.0% and (E)-4-methoxycinnamaldehyde had a BR90 of 0.38%. Among nine monoterpenoids tested,p-cymene was inactive, citronellal had a BR90 of 3.7%, and terpinene-4-ol had a BR90 of 0.46%. Para-substituted phenethyl alcohols gave increasing deterrence in the order: −NO2, CH3O−, −Cl, −CH3, −H. Wide varieties of structures were deterrent: C-8 to C-13, intermediate in polarity, and possessing either oxygen-containing or nitrile functional groups. The air concentration of (E)-cinnamaldehyde at its BR90 was 1.7 ng/ml. This relatively high concentration, the diversity in deterrent structures, and the lack of differences in deterrency among positional and optical isomers suggest that ovipositional deterrency in onion flies is mediated by receptors broadly tuned for detecting phenylpropenoid, phenolic, monoterpenoid, and perhaps other classes of allelochemicals.

Key words

Cinnamaldehyde Delia antiqua deterrent discriminate-dosage bioassay monoterpenoid oviposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfaro, R.I., Pierce, H.D., Jr., Borden, J.H., andOehlschlager, A.C. 1981. Insect feeding and oviposition deterrents from western red cedar foliage.J. Chem. Ecol. 7:39–48.Google Scholar
  2. Allen, C.F.H., andEdens, C.O., Jr. 1955. Phenylpropargyl aldehyde.Org. Synth. Coll. 3:731–733.Google Scholar
  3. Bestmann, H.J., andLi, K. 1981. Pheromone XXXVII. Eine stereospezifische Synthese der Komponenten des Sexualpheromones vonAntherea polyphemus, (E)-6,(Z)-11-Hexadecadienylacetat und (E)-6,(Z)-11-Hexadecadienal.Tetrahedron Lett. 22:4941–4944.Google Scholar
  4. Brattsten, L.B. 1983. Cytochrome P-450 involvement in the interactions between plant terpenes and insect herbivores, pp. 173–195,in P.A. Hedin (ed.). Plant Resistance to Insects. American Chemical Society Symposium Series 208. ACS, Washington, D.C.Google Scholar
  5. Bunker, C.W.O., andHirschfelder, A.D. 1925. Mosquito repellents.Am. J. Trop. Med. 5:359–383.Google Scholar
  6. Cowles, R.S., Keller, J.E., andMiller, J.R. 1989. Pungent spices, ground red pepper, and synthetic capsaicin as onion fly ovipositional deterrents.J. Chem. Ecol. 15:719–730.Google Scholar
  7. Davis, E.E. 1985. Insect repellents: concepts of their mode of action relative to potential sensory mechanisms in mosquitoes (Diptera: Culicidae).J. Med. Entomol. 22:273–243.Google Scholar
  8. Davis, E.E., andSokolove, P.G. 1976. Lactic acid-sensitive receptors on the antennae of the mosquito,Aedes aegypti.J. Comp. Physiol. 105:43–54.Google Scholar
  9. Den Ouden, H., andTheunissen, J. 1980. Controlled release of naphthalene: A repellent against oviposition of the cabbage rootfly,Delia brassicae.Neth. J. Plant Pathol. 86:17–25.Google Scholar
  10. Dethier, V.G. 1947. Chemical Insect Attractants and Repellents. Blakiston. Philadelphia, Pennsylvania 289 pp.Google Scholar
  11. Dethier, V.G. 1980. Evolution of receptor sensitivity to secondary plant substances with special reference to deterrents.Am. Nat. 115:45–66.Google Scholar
  12. Dethier, V.G. 1982. Mechanism of host-plant recognition.Entomol. Exp. Appl. 31:49–56.Google Scholar
  13. Eisner, T. 1970. Chemical defense against predation in arthropods, pp. 157–217,in E. Sondheimer and J.B. Simeone (eds.). Chemical Ecology. Academic Press, New York.Google Scholar
  14. Fatiadi, A.J. 1976. Active manganese dioxide oxidation in organic chemistry—Part I.Synthesis 1976(2):65–104.Google Scholar
  15. Finch, S. 1978. Volatile plant chemicals and their effect on host plant finding by the cabbage root fly (Delia brassicae).Entomol. Exp. Appl. 24:150–159.Google Scholar
  16. Finch, S., Eckenrode, C.J., andCadoux, M.E. 1986. Behavior of onion maggot (Diptera: Anthomyiidae) in commercial onion fields treated regularly with parathion sprays.J. Econ. Entomol. 79:107–113.Google Scholar
  17. Gastaminza, A.E., Ferracutti, N.N., andRodriguez, N.M. 1984. A convenient synthetic route to (E)-2-penten-1-ol.J. Org. Chem. 49:3859–3860.Google Scholar
  18. Gothilf, S., andBar-Zeev, M. 1972. Effect of vapor repellents on the electrical response of insect antennae.Experientia 28:601–603.Google Scholar
  19. Harris, C.R., Tolman, J.H. andSvec, H.J. 1982. Onion maggot (Diptera: Anthomyiidae) resistance to some insecticides following selection with parathion or carbofuran.Can. Entomol. 114:681–685.Google Scholar
  20. Harris, M.O., andMiller, J.R. 1982. Synergism of visual and chemical stimuli in the oviposition behavior ofDelia antiqua, pp. 117–122,in J.H. Visser and A.K. Minks (eds.). Proceedings 5th International Symposium on Insect Plant Relationships. Wageningen, The Netherlands. Pudoc, Wageningen.Google Scholar
  21. Harris, M.O., andMiller, J.R. 1983. Color stimuli and ovipositional behavior of the onion fly,Delia antiqua (Meigen) (Diptera: Anthomyiidae).Ann. Entomol. Soc. Am. 76:766–771.Google Scholar
  22. Harris, M.O., andMiller, J.R. 1984. Foliar form influences ovipositional behavior of the onion fly.Physiol. Entomol. 9:145–155.Google Scholar
  23. Harris, M.O., Keller, J.E., andMiller, J.R. 1987. Responses ton-dipropyl disulfide by ovipositing onion flies: Effects of concentration and site of release.J. Chem. Ecol. 13:1261–1277.Google Scholar
  24. Havukkala, I. 1982. Deterring oviposition of the cabbage root fly,Delia radicum (Diptera: Anthomyiidae), by non-chemical methods.Acta Entomol. Fenn. 40:9–15.Google Scholar
  25. Howard, J.J., Cazin, J., Jr., andWiemer, D.F. 1988. Toxicity of terpenoid deterrents to the leafcutting antAtta cephalotes and its mutualistic fungus.J. Chem. Ecol. 14:59–69.Google Scholar
  26. Howitt, A.J. 1958. Chemical control ofHylemia antiqua (Meig.) (Diptera: Anthomyiidae) in the Pacific Northwest.J. Econ. Entomol. 51:883–887.Google Scholar
  27. Ishikawa, Y., Ikeshoji, T., Matsumoto, Y., Tsutsumi, A., andMitsui, Y. 1983. 2-Phenethanol: An attractant for the onion and seed-corn flies,Hylemya antiqua andH. platura (Diptera: Anthomyiidae).Appl. Entomol. Zool. 18:270–277.Google Scholar
  28. Ishizumi, K., Koga, K. andYamada, S. 1968. Chemistry of sodium borohydride and diborane. IV. Reduction of carboxylic acids to alcohols with sodium borohydride through mixed carbonic-carboxylic anhydrides.Chem. Pharm. Bull. 16:492–497.Google Scholar
  29. Javer, A., Wynne, A.D., Borden, J.H., andJudd, G.J.R. 1987. Pine oil: An ovipositional deterrent for the onion maggot,Delia antiqua (Meigen) (Diptera: Anthomyiidae).Can. Entomol. 119:605–609.Google Scholar
  30. Jermy, T. 1966. Feeding inhibitors and food preference in chewing phytophagous insects.Entomol. Exp. Appl. 9:1–12.Google Scholar
  31. Jermy, T., andSzentesi, A. 1978. The role of inhibitory stimuli in the choice of oviposition site by phytophagous insects.Entomol. Exp. Appl. 24:458–471.Google Scholar
  32. Jones, T.H., Cole, R.A., andFinch, S. 1988. A cabbage root fly oviposition deterrent in the frass of garden pebble moth caterpillars.Entomol. Exp. Appl. 49:277–282.Google Scholar
  33. Kienzle, F. 1980. Notiz zur Synthese von (E)-12-Hydroxy-10-heptadecensäure, (5E,10E)-12-Hydroxy-5, 10-heptadecadiensäure und (5Z,10E)-12-Hydroxy-5,10-heptadecadiensäure.Helv. Chim. Acta 63:563–567.Google Scholar
  34. Kingsbury, C.A., Draney, D., Sopchik, A., Rissler, W., andDurham, D. 1976. Survey of13C-H splittings in alkenes.J. Org. Chem. 41:3863–3868.Google Scholar
  35. Kowalski, C.J., Weber, A.E., andFields, K.W. 1982. α-Keto dianion precursors via conjugative additions to cyclic α-bromo enones.J. Org. Chem. 47:5088–5093.Google Scholar
  36. Klocke, J.A., Balandrin, M.F., Barnby, M.A., andYamasaki, R.B. 1989. Limonoids, phenolics, and furanocoumarins as insect antifeedants, repellents, and growth inhibitory compounds, pp. 136–149,in J.T. Arnason, B.J.R. Philogne, and P. Morand (eds.). Insecticides of Plant Origin. ACS Symposium Series 387. American Chemical Society, Washington, D.C.Google Scholar
  37. Levin, D.A. 1971. Plant phenolics: An ecological perspective.Am. Nat. 105:157–181.Google Scholar
  38. Loosjes, M. 1976. Ecology and Genetic Control of the Onion Fly,Delia antiqua (Meigen). Pudoc, Wageningen.Google Scholar
  39. Lovett, J.V., Ryuntu, M.Y., andLiu, D.L. 1989. Allelopathy, chemical communication, and plant defense.J. Chem. Ecol. 15:1193–1202.Google Scholar
  40. Mandava, N.B., Orellana, R.G., Warthen, J.D., Jr., Worley, J.F., Dutkey, S.R., Finegold, H., andWeathington, B.C. 1980. Phytotoxins inRhyzoctonia solani: Isolation and biological activity ofm-hydroxy andm-methoxyphenylacetic acids.J. Agric. Food Chem. 28:71–75.Google Scholar
  41. Matsumoto, Y., andThorsteinson, A.J. 1968. Effects of organic sulfur compounds on oviposition in onion maggotHylemia antiqua (Diptera: Anthomyiidae).Appl. Entomol. Zool. 3:5–12.Google Scholar
  42. Metcalf, R.L., andLampman, R.L. 1989. Estragole analogues as attractants for corn rootworms (Coleoptera: Chrysomelidae).J. Econ. Entomol. 82:123–129.Google Scholar
  43. Miller, J.R., andCowles, R.S. 1990. Stimulo-deterrent diversion: A concept and its possible application to onion maggot control.J. Chem. Ecol. In press.Google Scholar
  44. Miller, J.R., andStrickler, K.L. 1984. Finding and accepting host plants, pp. 127–155,in W.J. Bell and R.T. Cardé, (eds.). Chemical Ecology of Insects. Chapman and Hall, New York.Google Scholar
  45. Mitscher, L.A. 1975. Antimicrobial agents from higher plants.Recent Adv. Phytochem. 9:243–283.Google Scholar
  46. Mowry, T.M., Keller, J.E., andMiller, J.R. 1989. Oviposition ofDelia antiqua (Diptera: Anthomyiidae) as influenced by substrate holes and particle size.Ann. Entomol. Soc. Am. 82:126–131.Google Scholar
  47. Nair, M.G., Epp, M.D., andBurke, B.A. 1988. Ferulate esters of higher fatty alcohols and allelopathy inKalanchoe diagremontiana.J. Chem. Ecol. 14:589–603.Google Scholar
  48. Pickett, J.A., Dawson, G.W., Griffiths, D.C., Xun, L., Macaulay, E.D.M., andWoodcock, C.M. 1984. Propheromones: An approach to the slow release of pheromones.Pestic. Sci. 15:261–264.Google Scholar
  49. Prokopy, R.J. 1981. Oviposition-deterring pheromone system of apple maggot flies, pp. 477–494,in E.R. Mitchell (ed.). Management of Insect Pests with Semiochemicals. Plenum Press, New York.Google Scholar
  50. Reddy, M.P., andRao, G.S.K. 1980. One-step Vilsmeier route to some 5-aryl-3-methyl-2(E),4(E)-pentadienals and their oxidation to pentadienoic acids.Synthesis 10:815–818.Google Scholar
  51. Rice, E.L. 1984. Allelopathy, 2nd ed. Academic Press, New York. 422 pp.Google Scholar
  52. Rodriguez, E., andLevin, D.A. 1976. Biochemical parallelism of repellents and attractants in higher plants and arthropods.Recent Adv. Phytochem. 10:214–270.Google Scholar
  53. SAS Institute. 1985. SAS User's Guide: Statistics, Version 5 Edition. Sas Institute Inc., Cary, North Carolina. 956 pp.Google Scholar
  54. Schneider, W.D., Miller, J.R., Breznak, J.A., andFobes, J.F. 1983. Onion maggot,Delia antiqua, survival and development on onions in the presence and absence of microorganisms.Entomol. Exp. Appl. 33:50–56.Google Scholar
  55. Singh, D., Siddiqui, M.S. andSharma, S. 1989. Reproduction retardant and fumigant properties in essential oils against rice weevil (Coleoptera: Curculionidae) in stored wheat.J. Econ. Entomol. 82:727–733.Google Scholar
  56. Steel, R.G.D., andTorrie, J.H. 1980. Principles and Procedures of Statistics, 2nd ed. McGraw-Hill, New York.Google Scholar
  57. Varma, R.S., andKabalka, W.G. 1985. Allylic alcohols via the chemoselective reduction of enone systems with sodium borohydride in methanolic tetrahydrofuran.Synth. Commun. 15:985–990.Google Scholar
  58. Villiéras, J., Rambaud, M., andGraff, M. 1985. Wittig-Horner reaction in heterogeneous media VII. A new strategy for the total synthesis of the royal jelly acid and the queen substance of honey-bee.Synth. Commun. 15:569–580.Google Scholar
  59. Visser, J.H. 1983. Differential sensory perceptions of plant compounds by insects, pp. 215–229,in P.A. Hedin (ed.). Plant Resistance to Insects. American Chemical Society Symposium Series 208. ACS, Washington, D.C.Google Scholar
  60. Weston, P.A., andMiller, J.R. 1985. Influence of cage design on precision of tube trap bioassay for attractants of the onion fly,Delia antiqua.J. Chem. Ecol. 11:435–440.Google Scholar
  61. Wiens, M.N., Rahe, J.E., Vernon, R.S., andMcLean, J.A. 1978. Ovipositional deterrents forHylemya antiqua in hydrated seeds ofPhaseolus vulgaris.Environ. Entomol. 7:165–167.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • R. S. Cowles
    • 1
  • J. R. Miller
    • 1
  • R. M. Hollingworth
    • 1
  • M. T. Abdel-Aal
    • 2
  • F. Szurdoki
    • 2
  • K. Bauer
    • 2
  • G. Matolcsy
    • 2
  1. 1.Department of Entomology and Pesticide Research CenterMichigan State UniversityEast Lansing
  2. 2.Plant Protection InstituteHungarian Academy of SciencesBudapestHungary

Personalised recommendations