Journal of Chemical Ecology

, Volume 16, Issue 8, pp 2381–2392 | Cite as

Ecological implications of condensed tannin structure: A case study

  • T. P. Clausen
  • F. D. Provenza
  • E. A. Burritt
  • P. B. Reichardt
  • J. P. Bryant
Article

Abstract

Condensed tannins were isolated from bitterbnish (Purshia tridentata) and blackbrush (Coleogyne ramosissima). Structural analyses showed that both tannins were procyanidins of similar polymer length. The overall stereochemistries at C-3 and C-4, however, differed between the two tannins. These changes in stereochemistry resulted in blackbrush tannins being less preferred than bitterbrush tannins when offered to snowshoe hares (Lepus americanus). It is unlikely that differences in protein-precipitating abilities are the cause for the preference of the bitterbrush over the blackbrush tannins. Instead, we hypothesize that condensed tannins may be depolymerized and absorbed following ingestion. Differences in tannin structure can lead to different depolymerized products and rates of depolymerization, both of which may affect herbivore preferences.

Key words

condensed tannin procyanidin blackbrush bitterbrush plant defense 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asquith, T.N., andButler, L.G. 1985. Use of dye-labeled proteins as spectrophotometric assay for protein precipitates such as tannins.J. Chem. Ecol. 11:1535–1544.Google Scholar
  2. Asquith, T.N., andButler, L.G. 1986. Interactions of condensed tannins with selected proteins.Phytochemistry 25:1591–1593.Google Scholar
  3. Blytt, H.J., Gusar, T.K., andButler, L.G. 1988. Antinutritional effects and ecological significance of dietary condensed tannins may not be due to binding and inhibition of digestive enzymes.J. Chem. Ecol. 14:1455–1466.Google Scholar
  4. Butler, L.G., Rogler, J.C., Mehansho, H., andCarlson, D.M. 1986. Dietary effects of tannins, p. 141–157,in V. Cody, E. Middleton, Jr., and J.B. Harborne (eds.). Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacological and Structure-activity Relationships. Alan R. Liss, New York.Google Scholar
  5. Czochanska, Z.,Foo, L.Y.,Newman, R.H., andPorter, L.J. 1980. Polymeric proanthocyanidins. Stereochemistry, structural units, and molecular weight.J. Chem. Soc. Perkin I. 2278–2286.Google Scholar
  6. Ellis, C.J., Foo, L.Y., andPorter, L.J. 1983. Enantiomerism: A characteristic of the proanthocyanidin chemistry of the monocotyledonae.Phytochemistry 22:483–487.Google Scholar
  7. Feeny, P.R. 1969. Inhibitory effect of oak leaf tannins on the hydrolysis of proteins by trypsin.Phytochemistry 8:2119–2126.Google Scholar
  8. Feeny, P.R. 1976. Plant apparency and chemical defense, pp. 1–40,in J.W. Wallace and R.L. Mansell (eds.). Recent Advances in Phytochemistry, Vol. 10, Biochemical Interaction between Plants and Insects. Plenum Press, New York.Google Scholar
  9. Fletcher, A.C., Porter, L.J., Haslam, E., andGupta, R.K. 1977. Plant proanthocyanidins. Part 3. Conformational and configurational studies of natural procyanidins.J. Chem. Soc. Perkin I. 1628–1637.Google Scholar
  10. Hagerman, A.E. 1987. Radial diffusion method for determining tannin in plant extracts.J. Chem. Ecol. 13:437–449.Google Scholar
  11. Hagerman, A.E., andButler, L.G. 1980. Condensed tannin purification and characterization of tannin associated proteins.J. Agric. Food. Chem. 28:947–952.Google Scholar
  12. Hagerman, A.E., andButler, L.G. 1981. The specificity of proanthocyanidin-protein interactions.J. Biol. Chem. 256:4494–4497.Google Scholar
  13. Hagerman, A.E., andKlucher, K.M. 1986. Plant Flavanoids in Biology and Medicine: biochemical, Pharmacological and Structure-Activity relationships. Alan R. Liss, New York.Google Scholar
  14. Hagerman, A.E., andRobbins, C.T. 1987. Implications of soluble tannin-protein complexes for tannin analysis and plant defense mechanisms.J. Chem. Ecol. 13:1243–1259.Google Scholar
  15. Hemingway, R.W., andMcGraw, G.W. 1983. Kinetics of acid-catalyzed cleavage of procyanidins.J. Wood Chem. Technol. 3:421–435.Google Scholar
  16. Hemingway, R.W., Foo, L.Y., andPorter, L.J. 1982. Linkage isomerism in trimeric and polymeric 2,3-cis-procyanidins.J. Chem. Soc. Perkin 1. 1209–1216.Google Scholar
  17. Hemingway, R.W., McGraw, G.W., Karchesy, J.J., Foo, L.Y., andPorter, L.J. 1983. Recent advances in the chemistry of condensed tannins.J. Appl. Polym. Scl. Appl. Polym. Symp. 37:967–977.Google Scholar
  18. Hsu, F., Nonaka, G., andNishioka. 1985. Acetylated flavanols and proanthocyanidins fromSalix sieboldiana.Phytochemistry 24:2089–2092.Google Scholar
  19. Jacques, D., andHaslam, E. 1974. Plant proanthocyanidins. Part II. Proanthocyanidin-A2 and its derivatives.J. Chem. Soc. Perkin I. 2663–2671.Google Scholar
  20. Jones, W.T., Broadhurst, B., andLyttleton, J.W. 1976. The condensed tannins of pasture legume species.Phytochemistry 15:1407–1409.Google Scholar
  21. Karchesy, J.J., andHemingway, R.W. 1980. Loblolly pine bark polyflavanoids.J. Agric. Food Chem. 28:222–228.Google Scholar
  22. Kufeld, R.C. 1973. Foods eaten by the rocky mountain elk.J. Range Manage. 26:106–113.Google Scholar
  23. Kufeld, R.C., Wallmo, O.C., andFeddema, C. 1973. Foods of the rocky mountain mule deer. USDA Forest Service Resarch Report RM-111, Fort Collins, Colorado.Google Scholar
  24. Lindroth, R.L., andBatzli, G.O. 1984. Plant phenolics as chemical defenses: effects of natural phenolics on survival and growth of prairie voles.J. Chem. Ecol. 10:229–244.Google Scholar
  25. McManus, J.P., Davis, K.G., Lilley, T.H., andHaslam, E. 1981. The association of proteins with polyphenols.J. Chem. Soc. Chem. Commun. 7:309–311.Google Scholar
  26. Mehansho, H., Butler, L.G., andCarlson, D.M. 1987. Dietary tannins and salivary prolinerich proteins: Interactions, induction and defense mechanisms.Annu. Rev. Nutr. 7:423–440.Google Scholar
  27. Mole, S., andWaterman., D.G. 1987. A critical analyses of techniques for measuring tannins in ecological studies. I. Techniques for chemically defining tannins.Oecologia 72:137–147.Google Scholar
  28. Mueller-Harvey, I., Reed, J.D., andHartley, R.D. 1987. Characterization of phenolic compounds, including flavanoids and tannins, of ten Ethiopian browse species of HPLC.J. Sci. Food Agric. 39:1–14.Google Scholar
  29. Nonaka, G.,Hsu, F., andNishioka, I. 1981. Structures of dimeric, trimeric, and tetrameric procyanidins fromAreca catechu L.J. Chem. Soc. Chem. Commun. 781–783.Google Scholar
  30. Porter, L.I. 1986. Number- and weight-average molecular weights for some proanthocyanidin polymers (condensed tannins).Aust. J. Chem. 39:557–562.Google Scholar
  31. Porter, L.J., andWoodruffe, I. 1984. Haemanalysis: The relative astringency of proanthocyanidin polymers.Phytochemistry 23:1255–1256.Google Scholar
  32. Porter, L.J., Newman, R.H., Foo, L.Y., andWong, H. 1982. Polymeric proanthocyanidins. [13C]NMR Studies of procyanidins.J. Chem. Soc. Perkin I. 1217–1221.Google Scholar
  33. Porter, L.J., Foo, L.Y., andFurneaux, R.H. 1985. Isolation of three naturally occurringO-β-glucopyranosides of procyanidin polymers.Phytochemistry 24:567–569.Google Scholar
  34. Provenza, F.D., andMalechek, J.C. 1984. Diet selection by domestic goats in relation to blackbrush twig chemistry.J. Appl. Ecol. 21:831–841.Google Scholar
  35. Provenza, F.D.,Burritt, E.A.,Clausen, T.P.,Bryant, J.P.,Reichardt, P.B., andDistel, R.A. 1989. Conditioned taste aversions: A mechanism for goats to avoid condensed tannins in blackbrush.Am. Nat. In press.Google Scholar
  36. Rhoades, D.F., andCates, R.G. 1976. Toward a general theory of plant antiherbivore chemistry, p. 168–213,in J.W. Wallace and R.L. Mansell (eds.). Recent Advances in Phytochemistry, Vol. 10, Biochemical Interaction between Plants and Insects. Plenum Press, New York.Google Scholar
  37. Robbins, C.T., Hanley, T.A., Hagerman, A.E., Hjeljord, O., Baker, D.L., Schwartz, C.C., andMoutz, W.W. 1987. Role of tannins in defending plants against ruminants: Reduction in protein availability.Ecology 68:98–107.Google Scholar
  38. Roux, D.G., Ferreira, D., andBotha, J.J. 1980. Structural considerations in predicting the utilization of tannins.J. Agric. Food Chem. 28:216–222.Google Scholar
  39. Shen, Z., Haslam, E., Falshaw, C.P., andBegley, M.J. 1986. Procyanidins and polyphenols ofLarix gmelini bark.Phytochemistry 25:2629–2635.Google Scholar
  40. Sheperd, H.R. 1971. Effects of clipping on key browse species in southwestern Colorado. Colorado Division of Game, Fish and Parks, Tech. Pub. 28, Denver, Colorado.Google Scholar
  41. Swain, T. 1979. Tannins and lignins, p. 657–682,in G.A. Rosenthal and D.H. Janzen (eds.). Herbivores: Their Interaction with Plant Metabolites. Academic Press, New York.Google Scholar
  42. Takechi, M., Tanaka, Y., Takehara, M., Nonaka, G., andNishioka, I. 1985. Structure and antiherpetic activity among the tannins.Phytochemistry 24:2245–2250.Google Scholar
  43. Van Sumere, C.F., Albrecht, J., Dedonder, A., Depooter, H., andPé, I. 1975. Plant proteins and phenolics, p. 211–264,in J.B. Harborne and C.F. Van Sumere (eds.). The Chemistry and Biochemistry of Plant Proteins, Vol. 11. Academic Press, New York.Google Scholar
  44. Williams, V.M., Porter, L.J., andHemingway, R.W. 1983. Molecular weight profiles of proanthocyanidin polymers.Phytochemistry 22:569–572.Google Scholar
  45. Zucker, W.V. 1983. Tannins: Does structure determine function? An ecological perspective.Am. Nat. 121:335–365.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • T. P. Clausen
    • 1
  • F. D. Provenza
    • 2
  • E. A. Burritt
    • 2
  • P. B. Reichardt
    • 1
  • J. P. Bryant
    • 3
  1. 1.Department of ChemistryUniversity of AlaskaFairbanks
  2. 2.Range Science DepartmentUtah State UniversityLogan
  3. 3.Institute of Arctic BiologyUniversity of AlaskaFairbanks

Personalised recommendations