Advertisement

Theoretical and Mathematical Physics

, Volume 102, Issue 1, pp 53–59 | Cite as

Multidimensional discrete Schrödinger equation with limit periodic potential

  • Yu. P. Chuburin
Article

Abstract

It is established that a discrete Schrödinger equation with small limit periodic potential has a nontrivial solution for a dense set of points of the spectrum, including the minimum and maximum points, and the modulus of the solution is a limit periodic function.

Keywords

Periodic Function Nontrivial Solution Maximum Point Periodic Potential Small Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Kozlov,Tr. Mosk. Mat. Ob-va,46, 99 (1983).Google Scholar
  2. 2.
    H. L. Cycon et al.,Schrödinger Operators, with Applications to Quantum Mechanics and Global Geometry, Springer-Verlag, Berlin (1987).Google Scholar
  3. 3.
    V. A. Chulaevskii,Usp. Mat. Nauk,36, 203 (1981).Google Scholar
  4. 4.
    J. Avron and B. Simon,Commun. Math. Phys.,82, 101 (1981).Google Scholar
  5. 5.
    E. O. Lokutsievskaya,Teor. Mat. Fiz.,87, 207 (1991).Google Scholar
  6. 6.
    I. M. Gel'fand,Dokl. Akad. Nauk SSSR,73, 1117 (1950).Google Scholar
  7. 7.
    M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. 4, Academic Press, New York (1978).Google Scholar
  8. 8.
    M. M. Skriganov,Tr. Mat. Inst. Akad. Nauk SSSR,171, 1 (1985).Google Scholar
  9. 9.
    B. V. Shabat,Introduction to Complex Analysis, Part 2 [in Russian], Nauka, Moscow (1976).Google Scholar
  10. 10.
    T. Kato,Perturbation Theory for Linear Operators, Springer Verlag, Berlin (1966).Google Scholar
  11. 11.
    M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. 1, Academic Press, New York (1972).Google Scholar
  12. 12.
    A. Ya. Gordon,Funktsional Analiz i Ego Prilozhen.,20, 70 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Yu. P. Chuburin

There are no affiliations available

Personalised recommendations