Theoretical and Mathematical Physics

, Volume 102, Issue 1, pp 40–46 | Cite as

Higher derivatives in gauge transformations

  • S. A. Gogilidze
  • V. V. Sanadze
  • Yu. S. Surovtsev
  • F. G. Tkebuchava


A mechanism of occurrence of higher derivatives of the coordinates in the symmetry transformation law in Noether's second theorem is elucidated. It is shown that the corresponding transformations in the Hamiltonian formalism are canonical in an extended phase space.


Phase Space Gauge Transformation Extended Phase High Derivative Hamiltonian Formalism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. A. M. Dirac,Can. J. Math.,2, 129 (1950);Lectures on Quantum Mechanics, Yeshiva University Press, New York (1964).Google Scholar
  2. 2.
    J. L. Anderson and P. G. Bergmann,Phys. Rev.,83, 1018 (1951); P. G. Bergmann and J. Goldberg,Phys. Rev.,98, 531 (1955).Google Scholar
  3. 3.
    E. C. G. Sudarshan and N. Mukunda,Classical Dynamics — A Modern Perspective, Wiley-Interscience, New York (1974), p. 78.Google Scholar
  4. 4.
    A. J. Hanson, T. Regge, and C. Teitelboim,Constrained Hamiltonian Systems, Accademia Nazionale del Lincei, Rome (1975).Google Scholar
  5. 5.
    K. Sundermeyer,Constrained Dynamics, Lecture Notes in Physics, Springer-Verlag, Berlin (1982).Google Scholar
  6. 6.
    C. Batlle, J. Gomis, J. M. Pons, and N. Román-Roy,J. Math. Phys.,27, 2953 (1986).Google Scholar
  7. 7.
    M. Henneaux, G. Teitelboim, and J. Zanelli,Nucl. Phys. B,332, 169 (1990).Google Scholar
  8. 8.
    A. Cabo and P. Louis-Martinez,Phys. Rev. D,42, 2726 (1990).Google Scholar
  9. 9.
    R. Cawley,Phys. Rev. Lett.,42, 413 (1979).Google Scholar
  10. 10.
    L. Castellani,Ann. Phys. (N.Y.),143, 357 (1982).Google Scholar
  11. 11.
    S. A. Gogiladze, V. V. Sanadze, Yu. S. Surovtsev, and F. G. Tkebuchava, “The theories with higher derivatives and gauge transformation construction,” JINR Communication E2-87-390 [in English], JINR, Dubna (1987);Int. J. Mod. Phys. A,4, 4165 (1989).Google Scholar
  12. 12.
    X. Gràcia and J. M. Pons, “Lagrangian gauge transformations without Hamiltonian counterpart,” Preprint UB-ECM-PF 13/90, Universitat de Barcelona, Barcelona (1990).Google Scholar
  13. 13.
    D. M. Gitman and I. V. Tyutin,Canonical Quantization of Fields with Constraints [in Russian], Nauka, Moscow (1986).Google Scholar
  14. 14.
    V. V. Nesterenko,J. Phys. A,22, 1673 (1989).Google Scholar
  15. 15.
    M. V. Ostrogradsky,Mem. Acad. Imper. Sci. St-Pétersbourg,4, 385 (1850).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • S. A. Gogilidze
    • 1
  • V. V. Sanadze
    • 1
  • Yu. S. Surovtsev
  • F. G. Tkebuchava
    • 1
  1. 1.Institute of High Energy Physics of the State UniversityTbilisiGeorgia

Personalised recommendations