Advertisement

Fluid Dynamics

, Volume 5, Issue 5, pp 833–842 | Cite as

Standing capillary-gravitational waves in a channel

  • O. M. Kiselev
Article
  • 15 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Lord Kelvin (W. Thomson), “The influence of wind and capillarity on waves in water supposed frictionless,” Philos. Mag.,42, 368–374 (1871).Google Scholar
  2. 2.
    Lord Rayleigh, “The form of standing waves on the surface of running water,” Proc. London Math. Soc.,15 (1883).Google Scholar
  3. 3.
    J. V. Wehausen and E. V. Laitone, Surface Waves, Handbuch der Physik, Vol. 9, Springer Verlag, Berlin-Göttingen-Heideltaerg (1963).Google Scholar
  4. 4.
    J. V. Wehausen, Free-Surface Flows. Research Frontiers in Fluid Dynamics, Interscience (1965).Google Scholar
  5. 5.
    Ya. I. Sekerzh-Zen'kovich, “The theory of standing capillary-gravitational isolated waves,” 2nd All-Union Meeting on Theoretical and Applied Mechanics, Annotated Report, Nauka, Moscow (1964).Google Scholar
  6. 6.
    Ya. I. Sekerzh-Zen'kovich, “The theory of standing capillary-gravitational waves of finite amplitude on the surface of a liquid over a wavy bottom. The application of the theory of functions to the mechanics of a continuous medium,” Proceedings of an International Symposium in Tbilisi, Vol. 2, Nauka, Moscow (1965).Google Scholar
  7. 7.
    H. Beckert, “Existenzbeweis für permanente Kapillarwellen einer schweren Flässigkeit entlang eines Kanals,” Arch, ration. Mech. and Analysis,13, No. 1 (1963).Google Scholar
  8. 8.
    H. Hilbig, “Existenzbeweis fur Potentialströmungen längs eines Kanals mit welliger sohle unter Einfluss von Schwerkraft und Oberflächenspannung,” Arch. Ration. Mech, and Analysis,18, No. 5 (1965).Google Scholar
  9. 9.
    F. L. Chernous'ko, “Motion of a thin layer of liquid under the effect of the forces of gravity and surface tension,” Prikl. Mat. i Mekhan.,29, No. 5 (1965).Google Scholar
  10. 10.
    N. N. Moiseev, “Special characteristics of the flow of a liquid subjected to the effect of surface-tension forces,” Prikl. Mat. i Mekhan.,29, No. 6 (1965).Google Scholar
  11. 11.
    B. V. Bazalii, “The wave motions of a liquid taking account of surface tension,” Dokl. Akad. Nauk SSSR,169, No. 6 (1966).Google Scholar
  12. 12.
    R. Barakat and A. Houston, “Nonlinear periodic capillary-gravity waves on a fluid of finite depth,” J. Geophys. Res.,73, No. 20 (1968).Google Scholar
  13. 13.
    L. C. Woods, “Compressible subsonic flow in two-dimensional channels with mixed boundary conditions,” J. Mech. and Appl. Math.,7, No. 3 (1954). (Russian translation: Mekhanika. Sb, Perev, i Obz. In. Period. Lit., No. 1 (1956).Google Scholar
  14. 14.
    B. Van der Pol and H. Bremmer, Operational Calculus Based on the Two-sided Laplace Integral, Cambridge Univ. Press (1950).Google Scholar
  15. 15.
    M. Kiselev, “The flow of a heavy liquid through a polygon-shaped barrier,” Proceedings of a Seminar on Inverse Boundary Value Problems, Kazan', No. 1, Izd. Kazansk. Un-ta (1964).Google Scholar
  16. 16.
    O. M. Kiselev, “Gravitational waves with the flow of a liquid through an offset,” Proceedings of a Seminar on Inverse Boundary Value Problems, No. 2, Kazan', Izd. Kazansk. Un-ta (1964).Google Scholar
  17. 17.
    O. M. Kiselev, “Gravitational waves with the flow of a liquid in a channel with a polygon-shaped bottom,” in: Modern Problems in Hydrodynamics, Izd. Naukova Dumka, Kiev (1967).Google Scholar
  18. 18.
    O. M. Kiselev, “Capillary waves in a channel with a polygon-shaped bottom,” Prikl. Mat. i Mekhan.,29, No. 1 (1965).Google Scholar
  19. 19.
    W. Thomson, “On stationary waves in flowing water,” Philos. Mag.,22, Ser. 5 (1886);23 (1887).Google Scholar
  20. 20.
    W. Wien, Lehrbuch der Hydrodynamik, Leipzig (1900).Google Scholar
  21. 21.
    N. E. Kochin, “The motion of a heavy liquid in a channel with a bottom, having an offset,” Dokl. Akad. Nauk SSSR,29, No. 8 (1938).Google Scholar
  22. 22.
    K. Ch. Chadaeva, “Plane-parallel flows in channels with barriers on the bottom,” Izv. Akad. Nauk SSSR. Otd. Tekhn. Nauk, Énergetika i Avtomatika, No. 2 (1959).Google Scholar
  23. 23.
    A. A. Abdyldaev, “The theory of flow in a channel with a low triangular barrier at the bottom,” Izv. VUZ, Matematika, No. 5 (1960).Google Scholar

Copyright information

© Consultants Bureau, a division of Plenum Publishing Corporation 1973

Authors and Affiliations

  • O. M. Kiselev
    • 1
  1. 1.Kazan'

Personalised recommendations