Advertisement

Theoretical and Mathematical Physics

, Volume 94, Issue 3, pp 345–357 | Cite as

Random walks in disordered systems with long-range transitions. Asymptotically exactly solvable models

  • F. S. Dzheparov
  • V. E. Shestopal
Article

Abstract

Random-jump models of transport in disordered systems are studied. They are described by the master equationP=−AξP, whereA is the generator of a spatially and temporally uniform random walk on a regular lattice, ξ is a diagonal operator, and ξ xy x δ xy , where {ξ x } are independent non-negative bounded random variables having the same distribution. A detailed analysis is made of the case when the transition rates are due to an interaction of multipole type and ξ x have several negative first moments (model of isotropic random jumps with long-range transport). Methods are developed for constructing asymptotic expansions of the propagator for small values of the Laplace parameter and at large times. An expansion is also obtained by means of a functional integral. The influence of both the long-range interaction and the disorder of the medium on the establishment of the long-time asymptotic behavior is considered. A method of investigating systems with forced drift along a certain direction is suggested. Methods of transforming asymptotically exactly solvable problems and connections with other known systems and realistic models are discussed. An estimate is obtained of thel1 norm of the resolvent of a Markov process with countable set of states andl1-bounded generator.

Keywords

Random Walk Asymptotic Expansion Markov Process Transition Rate Solvable Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. P. Zvyagin,Kinetic Phenomena in Disordered Semiconductors [in Russian], Moscow State University, Moscow (1984).Google Scholar
  2. 2.
    B. I. Shklovskii and A. L. Éfros,Electronic Properties of Doped Semiconductors [in Russian], Nauka, Moscow (1979).Google Scholar
  3. 3.
    C. R. Gochanour and M. D. Fayer,J. Phys. Chem.,85, 1981 (1989).Google Scholar
  4. 4.
    M. Kh. Ashurov, T. T. Basiev, A. N. Burshtein, et al.,Pis'ma Zh. Eksp. Teor. Fiz.,40, 98 (1984).Google Scholar
  5. 5.
    V. P. Gapontsev, F. S. Dzheparov, N. S. Platonov, and V. E. Shestopal,Pis'ma Zh. Eksp. Teor. Fiz.,41, 561 (1985).Google Scholar
  6. 6.
    L. Gomez-Jahn, J. Kasinski, and R. J. D. Muller,Chem. Phys. Lett.,125, 500 (1986).Google Scholar
  7. 7.
    D. E. Hart, P. A. Anfinrud, and V. S. Struve,J. Chem. Phys.,86, 2689 (1987).Google Scholar
  8. 8.
    Yu. G. Abov et al.,Zh. Eksp. Teor. Fiz.,99, 962 (1991);Izv. Akad. Nauk SSSR, Ser. Fiz.,52, 460 (1988).Google Scholar
  9. 9.
    E. N. Bodunov,Izv. Akad. Nauk SSSR, Ser. Fiz.,42, 303 (1978).Google Scholar
  10. 10.
    S. Alexander, J. Bernasconi, W. Schneider, and R. Orbach,Rev. Mod. Phys.,53, 175 (1981).Google Scholar
  11. 11.
    R. Zwanzig,J. Stat. Phys.,28, 127 (1982).Google Scholar
  12. 12.
    V. V. Anshelevich, K. M. Khanin, and Ja. G. Sinai,Commun. Math. Phys.,85, 449 (1982).Google Scholar
  13. 13.
    Ya. G. Sinai,Teor. Veroyatn. Ee Primen.,27, 247 (1982).Google Scholar
  14. 14.
    P. J. H. Denteneer and M. H. Ernst,Phys. Rev. B,29, 1755 (1984).Google Scholar
  15. 15.
    K. A. Pronin,Teor. Mat. Fiz.,61, 442 (1984).Google Scholar
  16. 16.
    S. M. Kozlov,Usp. Mat. Nauk,40, 61 (1985).Google Scholar
  17. 17.
    S. M. Kozlov and S. A. Molchanov,Dokl. Akad. Nauk SSSR,278, 531 (1984).Google Scholar
  18. 18.
    A. K. Harrison and R. Zwanzig,J. Stat. Phys.,42, 935 (1986).Google Scholar
  19. 19.
    K. Kundu, D. Izzo, and P. Phillips,J. Chem. Phys.,88, 2692 (1988).Google Scholar
  20. 20.
    A. V. Letchikov,Dokl. Akad. Nauk SSSR,304, 25 (1989).Google Scholar
  21. 21.
    H. Sher and M. Lax,Phys. Rev. B,7, 4491, 4502 (1973).Google Scholar
  22. 22.
    F. S. Dzheparov,Zh. Eksp. Teor. Fiz.,99, 982 (1991);Radiospektroskopiya (Perm'), No. 13, 135 (1980).Google Scholar
  23. 23.
    R. F. Loring, D. S. Franchi, and S. Mukamel,J. Chem Phys.,86, 1323 (1987).Google Scholar
  24. 24.
    F. S. Dzheparov, S. V. Stepanov, and V. E. Shestopal, Preprint No. 133 [in Russian], Institute of Theoretical and Experimental Physics, Moscow (1987).Google Scholar
  25. 25.
    F. S. Dzheparov and V. E. Shestopal, “Random walks in disordered systems with long-range transitions. Asymptotically exactly solvable models,” Preprint No. 141 [in Russian], Institute of Theoretical and Experimental Physics, Moscow (1991); F. S. Dzheparov and V. E. Shestopal, “Random walks in disordered systems with long-range transitions. Asymptotically exactly solvable models,” Preprint No. 11 [in English], Institute of Theoretical and Experimental Physics, Moscow (1990).Google Scholar
  26. 26.
    F. S. Dzheparov and V. E. Shestopal,Izv. Vyssh. Uchebn. Zaved. Fiz.,30, No. 6, 77 (1987).Google Scholar
  27. 27.
    E. Hernandez-Garcia, M. A. Rodrigez, L. San-Miguel Pesquera,Phys. Rev. B,42, 10653 (1990).Google Scholar
  28. 28.
    J.-Ph. Bouchaud and A. Georges,Phys. Rep.,185, 127 (1990).Google Scholar
  29. 29.
    J. Bricmont and A. Kupiainen,Phys. Rev. Lett.,66, 1689 (1990);Physica (Utrecht) A,163, 31 (1990).Google Scholar
  30. 30.
    I. M. Ziman,Principles of the Theory of Solids, Cambridge (1964).Google Scholar
  31. 31.
    M. Born and K. Huang,Dynamical Theory of Crystal Lattice, Oxford (1954).Google Scholar
  32. 32.
    M. A. Evgrafov,Asymptotic Estimates and Entire Functions [in Russian], Nauka, Moscow (1979).Google Scholar
  33. 33.
    M. F. Fedoryuk,Asymptotics: Integrals and Series [in Russian], Nauka, Moscow (1987).Google Scholar
  34. 34.
    W. Feller,An Introduction to Probability Theory and its Applications, Vol. 2, Wiley, New York (1966).Google Scholar
  35. 35.
    B. I. Shklovskii,Fiz. Tekh. Poluprovodn.,10, 1440 (1976).Google Scholar
  36. 36.
    M. Pollak and I. Riess,J. Phys. C.,9, 2339 (1976).Google Scholar
  37. 37.
    E. N. Bodunov and V. A. Malyshev,Fiz. Tverd. Tela (Leningrad),2, 3654 (1982).Google Scholar
  38. 38.
    B. Movaghar, B. Ries, and M. Grunewald,Phys. Rev. B,34, 5574 (1986).Google Scholar
  39. 39.
    B. Esser,J. Phys. C.,21, 911 (1988).Google Scholar
  40. 40.
    I. P. Zvyagin,Phys. Status Solidi B,152, 231 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • F. S. Dzheparov
  • V. E. Shestopal

There are no affiliations available

Personalised recommendations