Skip to main content

Difference analogs of the harmonic oscillator

This is a preview of subscription content, access via your institution.

Literature Cited

  1. A. Érdelyi et al. (eds), Higher Transcendental Functions (California Institute of Technology H. Bateman M. S. Project) Vol. 2, McGraw Hill, New York (1953).

    Google Scholar 

  2. A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  3. N. M. Atakishiev and S. K. Suslov, in: Modern Group Analysis: Methods and Applications [in Russian], Élm, Baku (1989), pp. 17–20.

    Google Scholar 

  4. I. A. Malkin and V. I. Man'ko, Dynamical Symmetries and Coherent States of Quantum Systems [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  5. N. M. Atakishiyev, Lecture Notes in Phys., Vol. 180, Springer-Verlag, Berlin (1983). pp. 393–396; N. M. Atakishiev, Teor. Mat. Fiz.,56, 154 (1983).

    Google Scholar 

  6. I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, Representations of the Rotation and Lorentz Groups and their Applications, Pergamon Press, Oxford (1963).

    Google Scholar 

  7. E. Inönü and E. P. Wigner, Proc. Nat. Acad. Sci. USA,39, 510 (1953).

    Google Scholar 

  8. W. Miller (Jr.), Symmetry Groups and their Applications, Academic Press, New York (1972).

    Google Scholar 

  9. L. D. Landau and E. M. Lifshitz, Quantum Mechanics; Non-Relativistic Theory, 3rd ed., Pergamon Press, Oxford (1977).

    Google Scholar 

  10. A. M. Perelomov, Generalized Coherent States and their Applications [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  11. A. J. Macfarlane, J. Phys. A,22, 4581 (1989).

    Google Scholar 

  12. L. C. Biedenharn, J. Phys. A,22, L873 (1989).

    Google Scholar 

  13. L. J. Rogers, Proc. London Math. Soc. (2),25, 318 (1894).

    Google Scholar 

  14. L. J. Rogers, Proc. London Math. Soc. (2),16, 315 (1917).

    Google Scholar 

  15. G. Szegö, Sitz. Preuss. Akad. Wiss. Phys,-Math. Kl.19, 242 (1926).

    Google Scholar 

  16. R. Askey and M. E. H. Ismail, Studies in Pure Mathematics (P. Erdös, ed.), Birkhauser, Boston, Mass. (1983), pp. 55–78.

    Google Scholar 

  17. R. Askey and J. A. Wilson, Memoirs Am. Math. Soc., No. 319 (1985).

  18. N. M. Atakishiyev and S. K. Suslov, “On the Askey-Wilson polynomials,”, Preprint KMUNTZ 89-04, Leipzig (1989).

  19. M. E. H. Ismail, D. Stanton, and G. Viennot, Europ. J. Combinatorics,8, 379 (1987).

    Google Scholar 

Download references

Authors

Additional information

Institute of Physics, Az. SSR Academy of Sciences; I. V. Kurchatov Institute of Atomic Energy, Moscow. Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 85, No. 1, pp. 64–73, October, 1990.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Atakishiev, N.M., Suslov, S.K. Difference analogs of the harmonic oscillator. Theor Math Phys 85, 1055–1062 (1990). https://doi.org/10.1007/BF01017247

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01017247

Keywords

  • Harmonic Oscillator
  • Difference Analog