Advertisement

Theoretical and Mathematical Physics

, Volume 95, Issue 2, pp 604–625 | Cite as

On the continuum limit of the conformal matrix models

  • A. Mironov
  • S. Pakuliak
Article

Abstract

The double scaling limit of a new class of the multi-matrix models proposed in [1], which possess the W-symmetry at the discrete level, is investigated in details. These models are demonstrated to fall into the same universality class as the standard multi-matrix models. In particular, the transformation of the W-algebra at the discrete level into the continuum one of the paper [2] is proposed, the corresponding partition functions being compared. All calculations are demonstrated in full in the first non-trivial case of W(3)-constraints.

Keywords

Partition Function Matrix Model Continuum Limit Universality Class Discrete Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Marshakov A., Mironov A., Morozov A.// Phys. Lett. 1991. V. B265. P. 99.Google Scholar
  2. [2]
    Fukuma M., Kawai H., Nakayama, R.// Int. J. Mod. Phys. 1991. V. A6. P. 1385.Google Scholar
  3. [3]
    Kazakov V.// Phys. Lett. 1985. V. B159. P. 303.Google Scholar
  4. [4]
    David F.// Nucl. Phys. 1985. V. B257. P. 45.Google Scholar
  5. [5]
    Regge T.// Nuovo Cim. 1961. V. 19. P. 558.Google Scholar
  6. [6]
    Kazakov V.// Mod. Phys. Lett. 1989. V. A4. P. 2125.Google Scholar
  7. [7]
    Brézin E., Kazakov V.// Phys. Lett. 1990. V. B235. P. 144.Google Scholar
  8. [8]
    Douglas M., Shenker S.// Nucl. Phys. 1990. V. B335. P. 635.Google Scholar
  9. [9]
    Gross D., MigdalA.// Phys. Rev. Lett. 1990. V. 64. P. 127.Google Scholar
  10. [10]
    Gross D., Migdal A.// Nucl. Phys. 1990. V. B340. P. 333.Google Scholar
  11. [11]
    Brézin E., Douglas M., Kazakov V., Shenker S.// Phys. Lett. 1990. V. 237B. P. 43.Google Scholar
  12. [12]
    Crnković Č., Ginsparg P., Moore G.// Phys. Lett. 1990. 237B. P. 196.Google Scholar
  13. [13]
    Gross D., Migdal A.// Phys. Rev. Lett. 1990. V. 64. P. 717.Google Scholar
  14. [14]
    Douglas M.// Phys. Lett. 1990. V. B238. P. 179.Google Scholar
  15. [15]
    Dijkgraaf R., Verlinde H., Verlinde E.// Nucl. Phys. 1991. V. B348. P. 435.Google Scholar
  16. [16]
    Izergin A. G., Korepin V. E.// Nucl. Phys. 1982. V.B205. P. 401.Google Scholar
  17. [17]
    Gerasimov A. et al.// Nucl. Phys. 1991. V. B357. P. 565.Google Scholar
  18. [18]
    Mironov A., Morozov A.// Phys. Lett. 1990. V. 252B. P. 47.Google Scholar
  19. [19]
    Ambjørn J., Jurkiewicz J., Makeenko Yu.// Phys. Lett. 1990. V. 251B. P. 517.Google Scholar
  20. [20]
    Makeenko Yu. et al.// Nucl. Phys. P. 1991. V. B356. P. 574.Google Scholar
  21. [21]
    Gerasimov A. et al. Mod. Phys. Lett. 1991. V. A6. P. 3079.Google Scholar
  22. [22]
    Kharchev S. et al.// Nucl. Phys. 1991. V. 366B. P. 569.Google Scholar
  23. [23]
    Kharchev S. et al. Generalized Kontsevich model versus Toda hierarchy and discrete matrix models. Preprint FIAN/TD-03/92-ITEP-M-3/92, hepth@xxx/9203043Google Scholar
  24. [24]
    Gava E., Narain K.// Phys. Lett. 1991. V. B263. P. 213.Google Scholar
  25. [25]
    Marshakov A., Mironov A., Morozov A.// Mod. Phys. Lett. 1992. V. A7. P. 1345.Google Scholar
  26. [26]
    Kharchev S. et al. Conformal matrix models as an alternative to conventional multi-matrix models. Preprint FIAN/TD-09/92-ITEP-M-4/92, hepth@xxx/9208044.Google Scholar
  27. [27]
    Fateev V., Lukyanov S.// Int. J. Mod. Phys. 1988. V. A3. P. 507.Google Scholar
  28. [28]
    Feigin B., Frenkel E. Preprint MIT, 1992.Google Scholar
  29. [29]
    Ablowitz M. J., Kaup D. J., Newell A. C., Segur H.// Stud. Appl. Math. 1974. V. 53. P. 249.Google Scholar
  30. [30]
    Ueno K., Takasaki K// Adv. Studies in Pure Math. 1984. V. 4. P. 1.Google Scholar
  31. [31]
    See, for example,Morozov A.// Nucl Phys. 1991. V. 357B. P. 619.Google Scholar
  32. [32]
    Zamolodchikov A. B.// Teor. Mat. Fiz. 1985. V. 65. P. 347.Google Scholar
  33. [33]
    Fukuma M., Kawai H., Nakayama R.// Com. Math. Phys. 1992. V. 143. P. 371.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • A. Mironov
  • S. Pakuliak

There are no affiliations available

Personalised recommendations